Loi normale

Retrouver tous les sujets résolus.
Thomas

Re: Loi normale

Message par Thomas » sam. 26 mai 2018 14:48

Je pense avoir avancé mais je n'arrive toujours pas à finir la question 2.
Voici ce que j'ai fait.
Fichiers joints
33519257_1884690041829689_2680460536491016192_n.jpg
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Loi normale

Message par SoS-Math(9) » sam. 26 mai 2018 15:07

Thomas,

Effectivement P(X<x)=P(X>x) (en raison de la symétrie de la courbe) et comme P(X>x)=1P(¯X>x)=1P(Xx)
Alors P(xXx)=P(Xx)P(X<x)=P(Xx)(1P(Xx))=2P(Xx)1.

SoSMath.
Thomas

Re: Loi normale

Message par Thomas » sam. 26 mai 2018 15:23

Je suis totalement d'accord avec vous.

Mais comment à partir de cette information arrive-t-on à prouver la question 2. Je vous remet l'exerice.
Fichiers joints
Capture.GIF
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Loi normale

Message par SoS-Math(9) » sam. 26 mai 2018 15:40

Thomas,

Il faut utiliser la question 1 avec k=1-alpha.

SOSMath.
Thomas

Re: Loi normale

Message par Thomas » sam. 26 mai 2018 16:22

Désolé, mais je ne vois pas où vous voulez en venir ...
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Loi normale

Message par SoS-Math(9) » sam. 26 mai 2018 17:48

Thomas,

je te rappelle que Φ(x)=P(Xx) et que P(xXx)=2P(Xx)1.

Donc P(xXx)=1α <=> Φ(x)=...

SoSMath.
Thomas

Re: Loi normale

Message par Thomas » sam. 26 mai 2018 18:25

Serait-ce Φ(x)= 1 - 1 -a = -a ...

Il n'y aurait donc qu'une seule solution ?!
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Loi normale

Message par SoS-Math(9) » sam. 26 mai 2018 20:15

Thomas,

Oui d'après la question il n'y a qu'une solution à l'équation Φ(x)=... !
D'ailleurs tu n'as pas fini le calcul … Φ(x) est égale à quoi ?

SoSMath.
Thomas

Re: Loi normale

Message par Thomas » sam. 26 mai 2018 20:34

Bonsoir,

Φ(x)= P(X⩽x) + P(−x⩽X⩽x) ?!

Je ne comprends vraiment pas, même avec la cloche !
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Loi normale

Message par SoS-Math(9) » dim. 27 mai 2018 09:04

Bonjour Thomas,

P(xXx)=2P(Xx)1
<=> P(xXx)=2Φ(x)1

Or on veut P(xXx)=1α

Donc 1α=2Φ(x)1 d'où Φ(x)=...

SoSMath.
Thomas

Re: Loi normale

Message par Thomas » dim. 27 mai 2018 10:03

Bonjour,

Je propose ceux ci comme résolution,mais je ne suis pas sûr de moi ?
Qu'en pensez vous ?
Fichiers joints
33809758_1884996631799030_1060112930697117696_n.jpg
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: Loi normale

Message par sos-math(21) » lun. 28 mai 2018 14:06

Bonjour,
oui c'est cela.
P(Xx)=P(Xx)+P(xXx)=1α+α2=1α2
Bonne continuation
Fichier_001.png
Thomas

Re: Loi normale

Message par Thomas » mer. 30 mai 2018 18:39

Bonjour,

J'avance dans l'exercice, mais je n'arrive pas à trouver à l'intégrale de f(t).
Comment faire ?

Merci d'avance.
SoS-Math(31)
Messages : 1360
Enregistré le : lun. 12 oct. 2015 10:33

Re: Loi normale

Message par SoS-Math(31) » jeu. 31 mai 2018 14:49

Bonjour Thomas,
Pour quelle question veux tu calculer cette intégrale ?
Il faut calculer des probabilités et faire correspondre les aires sous la courbe. Tu ne peux pas à l'aide d'une primitive calculer l'intégrale de f.
Bonne continuation.
Thomas

Re: Loi normale

Message par Thomas » jeu. 31 mai 2018 15:41

Bonjour,

Il s'agit de la question 3, je ne vois pas comment la commencer ...
Merci d'avance de votre aide
Répondre