Suite spé maths dm
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Suite spé maths dm
Bonsoir Même,
ce n'est pas ce qui est demandé dans l'énoncé.
ce n'est pas ce qui est demandé dans l'énoncé.
Re: Suite spé maths dm
Bonsoir
Pourtant c'est que je pensais : il est marqué " on se propose de démontrer ..." C'est donc pour ça que je pensais à mon raisonnement
Merci d'avance
Même
Pourtant c'est que je pensais : il est marqué " on se propose de démontrer ..." C'est donc pour ça que je pensais à mon raisonnement
Merci d'avance
Même
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Suite spé maths dm
Ton raisonnement ainsi fait, est non seulement faux mais ne répond à aucune question.
Voir les messages de mardi
20:39 de l'avant dernière ligne on en déduit la réponse à la question 2 c) 103ndivisiblepar10n
la dernière ligne on en déduit la réponse à la question 2d)
20:45 on en déduit la réponse à la question 2e)
La question 3) est une simple récurrence.
Voir les messages de mardi
20:39 de l'avant dernière ligne on en déduit la réponse à la question 2 c) 103ndivisiblepar10n
la dernière ligne on en déduit la réponse à la question 2d)
20:45 on en déduit la réponse à la question 2e)
La question 3) est une simple récurrence.
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Suite spé maths dm
Ok, je n'arrivais pas à lire la première phrase.
Ceci étant ton raisonnement reste faux.
De plus :
Il faut montrer qu'il existe une infinité d'entiers N tels que N divise uN mais cela ne veut pas dire pour tous entiers N !
En fait, tu as montré que tous les entiers N de la forme 3n répondent à la question et il y a une infinité de N de cette forme.
Ceci étant ton raisonnement reste faux.
De plus :
Il faut montrer qu'il existe une infinité d'entiers N tels que N divise uN mais cela ne veut pas dire pour tous entiers N !
En fait, tu as montré que tous les entiers N de la forme 3n répondent à la question et il y a une infinité de N de cette forme.
Re: Suite spé maths dm
Bonsoir
je comprends maintenant mon erreur mais je ne vois pas à présent comment en revenir au problème de départ à partir de mes informations ?
Merci d'avance
Meme
je comprends maintenant mon erreur mais je ne vois pas à présent comment en revenir au problème de départ à partir de mes informations ?
Merci d'avance
Meme
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Suite spé maths dm
Bonjour,
Pour conclure :
Comme il y a une infinité d'entiers naturels n , en posant N = 3n, il y a une infinité de N, et les entiers N, d'après ta démonstration par récurrence, vérifient la propriété "N divise uN".
Pour conclure :
Comme il y a une infinité d'entiers naturels n , en posant N = 3n, il y a une infinité de N, et les entiers N, d'après ta démonstration par récurrence, vérifient la propriété "N divise uN".
Re: Suite spé maths dm
Bonsoir
Merci beaucoup pour votre réponse, j'ai compris.
Bonne soirée
Meme
Merci beaucoup pour votre réponse, j'ai compris.
Bonne soirée
Meme
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Suite spé maths dm
Très bien. Merci et bonne soirée.
Re: Suite spé maths dm
Bonjour,
Merci de votre aide bien qu'elle ait été fournie il y a fort longtemps, je rencontre cependant un blocage au niveau de la récurrence. Toutes les questions précédentes ont été réussi mais je ne vois pas comment faire cette démonstration. Il s'agit du même sujet que la personne qui a ouvert le post : démontrer par récurrence que pour tout n ∈ N* 3n divise u3n
Merci de votre aide éventuelle
Merci de votre aide bien qu'elle ait été fournie il y a fort longtemps, je rencontre cependant un blocage au niveau de la récurrence. Toutes les questions précédentes ont été réussi mais je ne vois pas comment faire cette démonstration. Il s'agit du même sujet que la personne qui a ouvert le post : démontrer par récurrence que pour tout n ∈ N* 3n divise u3n
Merci de votre aide éventuelle
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: Suite spé maths dm
Bonjour,
il faut que tu te serves de la propriété précédente : u3n est divisible par 3un.
En effet pour l'hérédité, si tu supposes que pour un certain rang n u3n est divisible par 3n, alors u3n+1=u3×3n=u3N donc u3n+1 est divisible par 3uN=3u3n.
Donc il existe un entier k tel que u3n+1=k×3×u3n (*).
or par hypothèse de récurrence, u3n est divisible par 3n donc il existe k′ entier tel que u3n=k′×3n, soit en remplaçant dans (*) :
u3n+1=k×3×k′×3n=kk′×3n+1, ce qui prouve que u3n+1 est divisible par 3n+1.
Et on a montré l'hérédité.
Est-ce plus clair ?
il faut que tu te serves de la propriété précédente : u3n est divisible par 3un.
En effet pour l'hérédité, si tu supposes que pour un certain rang n u3n est divisible par 3n, alors u3n+1=u3×3n=u3N donc u3n+1 est divisible par 3uN=3u3n.
Donc il existe un entier k tel que u3n+1=k×3×u3n (*).
or par hypothèse de récurrence, u3n est divisible par 3n donc il existe k′ entier tel que u3n=k′×3n, soit en remplaçant dans (*) :
u3n+1=k×3×k′×3n=kk′×3n+1, ce qui prouve que u3n+1 est divisible par 3n+1.
Et on a montré l'hérédité.
Est-ce plus clair ?
Re: Suite spé maths dm
Merci beaucoup de votre réponse,
C'est plus claire, mais je ne pense pas encore avoir bien compris. Je vais continuer de réfléchir, ceci étant merci de votre aide :)
C'est plus claire, mais je ne pense pas encore avoir bien compris. Je vais continuer de réfléchir, ceci étant merci de votre aide :)
-
- Messages : 1867
- Enregistré le : mer. 2 nov. 2011 09:39
Re: Suite spé maths dm
Bonjour,
Bon courage alors,
A bientôt
Bon courage alors,
A bientôt