Intégrales
Intégrales
Bonsoir,
Je fais un exercice sur les intégrales, et je n'arrive pas à résoudre l'inéquation de la question 1.
J'ai essayé avec ln mais je n'ai pas trouvé ...
J'ai essayé avec les intégrales, je ne vois pas comment continuer.
Pouvez-vous m'aider ?
Merci d'avance.
Je fais un exercice sur les intégrales, et je n'arrive pas à résoudre l'inéquation de la question 1.
J'ai essayé avec ln mais je n'ai pas trouvé ...
J'ai essayé avec les intégrales, je ne vois pas comment continuer.
Pouvez-vous m'aider ?
Merci d'avance.
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Bonjour Thomas,
ce que tu as fait est correct, mais pour résoudre une équation ou une inéquation il isoler les termes en x d'un côté.
Ainsi tu as 1≤2ex
puis 12≤ex
Je te laisse poursuivre
ce que tu as fait est correct, mais pour résoudre une équation ou une inéquation il isoler les termes en x d'un côté.
Ainsi tu as 1≤2ex
puis 12≤ex
Je te laisse poursuivre
Re: Intégrales
Bonsoir,
J'ai fait la question 1, mais je bloque de nouveau à la question 2.
Voici ce que j'ai commencé.
Merci en attendant.
J'ai fait la question 1, mais je bloque de nouveau à la question 2.
Voici ce que j'ai commencé.
Merci en attendant.
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Ce que tu as fait est bien, cependant il y a une petite erreur. C'est pour x=1 que la dérivée est nulle et non pour x=e1.
Et si tu calcules ça te donne un maximum égal à 0.
Tu peux donc conclure sur le signe de la fonction que tu as étudié.
Et si tu calcules ça te donne un maximum égal à 0.
Tu peux donc conclure sur le signe de la fonction que tu as étudié.
Re: Intégrales
Je pense avoir fini mon exercice.
Pouvez-vous me dire si mon raisonnement est correct ?
Merci d'avance.
Pouvez-vous me dire si mon raisonnement est correct ?
Merci d'avance.
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Ce que tu as fait est correct, peut être pourrais tu donner la valeur exacte de l'aire.
Re: Intégrales
Bonjour,
Je fais un nouvel exercice sur les intégrales, et je n'arrive pas à simplifier l'intégrale de la question 2.
Voici ce que j'ai commencé.
Pouvez-vous me donner une piste.
Merci d'avance.
A bientôt !
Je fais un nouvel exercice sur les intégrales, et je n'arrive pas à simplifier l'intégrale de la question 2.
Voici ce que j'ai commencé.
Pouvez-vous me donner une piste.
Merci d'avance.
A bientôt !
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: Intégrales
Bonjour,
ta fonction est h(t)=21+10e−0,1t
Pour la forme que l'on te propose, tu vois qu'il y a e0,1t donc cela nous invite à multiplier par e0,1t le numérateur et le dénominateur de la fraction, ce qui ne change pas la valeur de la fraction :
h(t)=21+10e−0,1t=2×e0,1t(1+10e−0,1t)×e0,1t
Je te laisse développer cela, tu ne seras pas loin de la forme demandée, il restera juste à écrire 2=20×0,1.
Bonne continuation
ta fonction est h(t)=21+10e−0,1t
Pour la forme que l'on te propose, tu vois qu'il y a e0,1t donc cela nous invite à multiplier par e0,1t le numérateur et le dénominateur de la fraction, ce qui ne change pas la valeur de la fraction :
h(t)=21+10e−0,1t=2×e0,1t(1+10e−0,1t)×e0,1t
Je te laisse développer cela, tu ne seras pas loin de la forme demandée, il restera juste à écrire 2=20×0,1.
Bonne continuation
Re: Intégrales
Je comprends votre démarche, mais je n'arrive pas à développer le dénominateur ...
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Bonjour Thomas,
(1+10e−0,1t)×e0,1t=e0,1t+10×e0,1t×e−0,1t
Ensuite il faut utiliser ea×eb=ea+b
(1+10e−0,1t)×e0,1t=e0,1t+10×e0,1t×e−0,1t
Ensuite il faut utiliser ea×eb=ea+b
Re: Intégrales
Je poursuis l'exercice, j'ai calculé la valeur moyenne mais je ne vois pas comment l'interpréter ...
Est ce que je me suis trompé ?
Est ce que je me suis trompé ?
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Je crois qu'il y a une erreur de calcul pour ton résultat.
(120-68)/30 est environ égal à 1,73.
(120-68)/30 est environ égal à 1,73.
Re: Intégrales
Bonjour,
Dans ce cas là, faut il mettre que la hauteur des plantes est en moyenne de 1,73 m ?
Dans ce cas là, faut il mettre que la hauteur des plantes est en moyenne de 1,73 m ?
-
- Messages : 3587
- Enregistré le : ven. 25 nov. 2016 14:24
Re: Intégrales
Oui, entre la 30ième et la 60ième semaine en moyenne la hauteur des plantes est de 1,73m
Re: Intégrales
Bonjour,
Je fais un dernier exercice sur les intégrales, plus précisément les suites d'intégrales,
J'ai réussi à faire la question 1.
Pour la question 2, voici ce que j'ai commencé, mais je n'arrive pas à poursuivre. Faut-il mettre tout sur le même dénominateur.
Merci de votre réponse.
A bientôt !
Je fais un dernier exercice sur les intégrales, plus précisément les suites d'intégrales,
J'ai réussi à faire la question 1.
Pour la question 2, voici ce que j'ai commencé, mais je n'arrive pas à poursuivre. Faut-il mettre tout sur le même dénominateur.
Merci de votre réponse.
A bientôt !