logarithme
logarithme
SOS !!!!!!!!! HELP !!!
voilà l'exercice sur le log et l'intégrale :
n ∈ N\{1} fn(x) = [Ln(x)]n
1) discuter selon n la monotonie de fn ainsi que la limfn(x) quand x tend vers 0+
2)a)dresser les TV de f2 et f3
b)determiner les positions relatives de Cf2 et Cf3 puis tracer les courbes.
3) In=\biginte1fn(x)dx
a)calculer I2
b)Mq Un+1+(n+1)In = e
c) calculer la mesure de l'aire du domaine limité par les deux courbes Cf2 et Cf3
4)a)Mq In ≥ 0 ∀ n ∈ N*\{1}
b) Mq (In) est décroissante
c) en déduire que en+2 ≤In ≤ en+1 puis déterminer Lim In quand n tend vers +∞
SVP , j'ai vraiment besoin d'une réponse aujourd'hui ,j'attends pas une réponse mais un peu d'aide surtout pour les questions :1) , 3)c et 4)a,b et c
merci BCP , et vive SOS math !!
johny
voilà l'exercice sur le log et l'intégrale :
n ∈ N\{1} fn(x) = [Ln(x)]n
1) discuter selon n la monotonie de fn ainsi que la limfn(x) quand x tend vers 0+
2)a)dresser les TV de f2 et f3
b)determiner les positions relatives de Cf2 et Cf3 puis tracer les courbes.
3) In=\biginte1fn(x)dx
a)calculer I2
b)Mq Un+1+(n+1)In = e
c) calculer la mesure de l'aire du domaine limité par les deux courbes Cf2 et Cf3
4)a)Mq In ≥ 0 ∀ n ∈ N*\{1}
b) Mq (In) est décroissante
c) en déduire que en+2 ≤In ≤ en+1 puis déterminer Lim In quand n tend vers +∞
SVP , j'ai vraiment besoin d'une réponse aujourd'hui ,j'attends pas une réponse mais un peu d'aide surtout pour les questions :1) , 3)c et 4)a,b et c
merci BCP , et vive SOS math !!
johny
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: logarithme
Bonjour Johny,
Pour la question 1), il faut dériver la fonction fn et étudier son signe (qui va dépendre de n).
pour la limite en 0 de fn, il faut utiliser une limite de référence ...
Pour la question 3c) : l'aire comprise entre deux courbes est donnée par un calcul d'intégrale
(si f < g sur [a, b], alors l'aire comprise entre f et g est égale à .... à toi de retrouver le résultat).
Pour la question 4a): voici un rappel : si f > 0 sur [a, b], alors ∫baf(x)dx > 0
Voila pour le moment,
Bon courage,
SoSMath.
Pour la question 1), il faut dériver la fonction fn et étudier son signe (qui va dépendre de n).
pour la limite en 0 de fn, il faut utiliser une limite de référence ...
Pour la question 3c) : l'aire comprise entre deux courbes est donnée par un calcul d'intégrale
(si f < g sur [a, b], alors l'aire comprise entre f et g est égale à .... à toi de retrouver le résultat).
Pour la question 4a): voici un rappel : si f > 0 sur [a, b], alors ∫baf(x)dx > 0
Voila pour le moment,
Bon courage,
SoSMath.
Re: logarithme
merci beaucoup
johny
johny
-
- Messages : 4004
- Enregistré le : mer. 5 sept. 2007 12:04
Re: logarithme
A bientôt sur SOS Math
Re: logarithme
bonjour , désolé mais j'ai encore répondre à la première question
j'ai trouvé que le dérivé est égale à n LN(x)n+1
j'ai trouvé que le dérivé est égale à n LN(x)n+1
Re: logarithme
bonjour , désolé mais j'ai encore répondre à la première question
j'ai trouvé que le dérivé est égale à n LN(x)n+1 ,c juste ???
mais aprés j'ai pas compris comment faire pour étudier le signer ?? un peu t'aide SVP
SoS!!!!!!!!!!!! Sos !!!!!!!!!!!!
johny
j'ai trouvé que le dérivé est égale à n LN(x)n+1 ,c juste ???
mais aprés j'ai pas compris comment faire pour étudier le signer ?? un peu t'aide SVP
SoS!!!!!!!!!!!! Sos !!!!!!!!!!!!
johny
Re: logarithme
je crois que j'ai trouvé la méthode : c'est celon la parité de n ??
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: logarithme
Bonjour Johny,
* Pour dérivée ta fonction fn il faut utiliser la formule de dérivation (un),=nu,un−1 (ta réponse est fausse).
*Le signe de fn' dépend bien de la parité de n.
Bon courage,
SoSMath.
* Pour dérivée ta fonction fn il faut utiliser la formule de dérivation (un),=nu,un−1 (ta réponse est fausse).
*Le signe de fn' dépend bien de la parité de n.
Bon courage,
SoSMath.
Re: logarithme
donc c'est égale à (n/x)[Ln(x)]n+1 ????
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: logarithme
Non ! Attention à ton exposant ...
SoSMath.
SoSMath.
Re: logarithme
lol , j'ai fais une faute de frappe , c'est égale à (n/x)[Ln(x)]n−1 ???
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: logarithme
Oui, tu as bien : f,n(x)=nx(ln(x))n−1.
bon courage pour la suite,
SoSMath.
bon courage pour la suite,
SoSMath.