Equations du second de degré : problèmes
Equations du second de degré : problèmes
Bonjour,
J'ai un devoir demain, et j'ai à peu près tout compris sur le second degré mis à part les problèmes. Y aurait-t-il une démarche commune pour les résoudre par exemple :
Un lycée projette un voyage et le transporteur a fait un prix global de 1200 euros. 4 élèves, qui n'étaient pas inscrits, se décident à participer à cette excursion ; ainsi le prix baisse de 10 euros pour chaque élève.
Quel est le nombre d'élève participant au voyage et le montant payé par chaque élève ?
x=nb d'élèves inscrit
y= prix initial du voyage (euros)
xy=1200
donc (x+4)(y-10)=1200
et là on me dit de mettre
y=1200/x <---- je ne comprends pas
Merci,
Cordialement,
Anne
J'ai un devoir demain, et j'ai à peu près tout compris sur le second degré mis à part les problèmes. Y aurait-t-il une démarche commune pour les résoudre par exemple :
Un lycée projette un voyage et le transporteur a fait un prix global de 1200 euros. 4 élèves, qui n'étaient pas inscrits, se décident à participer à cette excursion ; ainsi le prix baisse de 10 euros pour chaque élève.
Quel est le nombre d'élève participant au voyage et le montant payé par chaque élève ?
x=nb d'élèves inscrit
y= prix initial du voyage (euros)
xy=1200
donc (x+4)(y-10)=1200
et là on me dit de mettre
y=1200/x <---- je ne comprends pas
Merci,
Cordialement,
Anne
-
- Messages : 2461
- Enregistré le : lun. 5 juil. 2010 13:47
Re: Equations du second de degré : problèmes
Bonsoir Anne,
Vous savez que \(xy=1200\), c'est à dire que \(x \times y =1200\).
Vous pouvez donc en déduire que \(y=\frac{1200}{x}\).
Cette technique permet ensuite de remplacer \(y\) par \(\frac{1200}{x}\) dans l'autre égalité afin d'obtenir une équation à une seule inconnue, ici \(x\).
A bientôt sur SOS-math
Vous savez que \(xy=1200\), c'est à dire que \(x \times y =1200\).
Vous pouvez donc en déduire que \(y=\frac{1200}{x}\).
Cette technique permet ensuite de remplacer \(y\) par \(\frac{1200}{x}\) dans l'autre égalité afin d'obtenir une équation à une seule inconnue, ici \(x\).
A bientôt sur SOS-math
Re: Equations du second de degré : problèmes
Merci beaucoup !
Mais lorsque je développe et réduis j'obtiens :
-10x+(4800/x)-40 = 0
Or il faudrait que l'un de mes x soit x²
Mais lorsque je développe et réduis j'obtiens :
-10x+(4800/x)-40 = 0
Or il faudrait que l'un de mes x soit x²
-
- Messages : 2461
- Enregistré le : lun. 5 juil. 2010 13:47
Re: Equations du second de degré : problèmes
Pour avoir des \(x^2\), il vous faut encore réduire au même dénominateur : \({-} 10x + \frac{4800}{x}-40=\frac{{-} 10x^2 + 4800 -40 x}{x}\).
je vous laisse poursuivre ...
SOS-math
je vous laisse poursuivre ...
SOS-math
Re: Equations du second de degré : problèmes
Merci mais je ne comprends pas bien ce qui est demandé.
\({-} 10x + \frac{4800}{x}-40=\frac{{-} 10x^2 + 4800 -40 x}{x}\).
comment avait vous fait pour écrire (-10x²+4800-40x)/x
\({-} 10x + \frac{4800}{x}-40=\frac{{-} 10x^2 + 4800 -40 x}{x}\).
comment avait vous fait pour écrire (-10x²+4800-40x)/x
-
- Messages : 2461
- Enregistré le : lun. 5 juil. 2010 13:47
Re: Equations du second de degré : problèmes
J'ai simplement réduit au même dénominateur, Anne.
Re: Equations du second de degré : problèmes
D'accord merci, j'ai réussi à finir l'exercice.
Cordialement, Anne.
Cordialement, Anne.
-
- Messages : 2461
- Enregistré le : lun. 5 juil. 2010 13:47
Re: Equations du second de degré : problèmes
A bientôt sur SOS-math, Anne.