DM Sur les nombres premiers .
DM Sur les nombres premiers .
Boujour ,
J'ai la propriété suivante :
Un nombre premier , p , est dit de Sophie Germain si le nombre 2p + 1 est aussi premier. Exemple : p=3 et 2p+1=2*3+1=7sont des nombres premiers alors 3 est un nombre premier de Sophie Germain.
1/ Déterminez les nombres premiers de Sophie Germain inférieur a 50 ( posez tous les calculs) ;
Je prends 1 par 1 tous les nombres premier .
p=2 : 2*2+1=5
...
p=13 ( soir un nombre premier) : 2*13+1=27
Mais 27 n'est pas un nombre premier .
Je ne comprends pas . cette propriété est fausse pour moi . que faut il faire ?
Merci
J'ai la propriété suivante :
Un nombre premier , p , est dit de Sophie Germain si le nombre 2p + 1 est aussi premier. Exemple : p=3 et 2p+1=2*3+1=7sont des nombres premiers alors 3 est un nombre premier de Sophie Germain.
1/ Déterminez les nombres premiers de Sophie Germain inférieur a 50 ( posez tous les calculs) ;
Je prends 1 par 1 tous les nombres premier .
p=2 : 2*2+1=5
...
p=13 ( soir un nombre premier) : 2*13+1=27
Mais 27 n'est pas un nombre premier .
Je ne comprends pas . cette propriété est fausse pour moi . que faut il faire ?
Merci
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: DM Sur les nombres premiers .
Bonjour,
tu n'as pas bien compris : tous les nombres premiers inférieurs à 50 ne sont pas des nombres premiers de Sophie Germain : il s'agit de voir lesquels le sont : 13 n'en est pas un !
tu n'as pas bien compris : tous les nombres premiers inférieurs à 50 ne sont pas des nombres premiers de Sophie Germain : il s'agit de voir lesquels le sont : 13 n'en est pas un !
Re: DM Sur les nombres premiers .
Merci , mais du coup à quoi servent sa propriété ?
-
- Messages : 2461
- Enregistré le : lun. 5 juil. 2010 13:47
Re: DM Sur les nombres premiers .
Bonjour Lucie,
Sophie Germain a trouvé une propriété sur les nombres premiers et elle a voulu partager sa connaissances avec d'autres : aujourd'hui c'est à ton tour de découvrir cette propriété.
Il te reste à faire ton exercice pour bien comprendre cette propriété.
Bon courage.
SOS-math
Sophie Germain a trouvé une propriété sur les nombres premiers et elle a voulu partager sa connaissances avec d'autres : aujourd'hui c'est à ton tour de découvrir cette propriété.
Il te reste à faire ton exercice pour bien comprendre cette propriété.
Bon courage.
SOS-math