bonjour, pouvez-vous m'aider?
Déterminer la limite de f en + infini et en -infini
f(x)=(x+1)e^2x ) - x² -3x -4
en + infini et - infini je trouve une FI et j'arrive pas à la levée
Merci d'avance!
calcul de limite
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: calcul de limite
Bonjour,
tu as bien : \(f(x)=(x+1)e^{2x} - x^2 -3x -4\), c'est cela ?
Par exemple pour \(+\infty\) : qui est le terme le plus fort (c'est à dire qui croît le plus vite en \(+\infty\) ? C'est \(e^{2x}\).
Factorise par \(e^{2x}\) : \(f(x)=e^{2x}[x+1 -\frac{ x^2}{e^{2x}} -\frac{3x}{e^{2x}} -\frac{4}{e^{2x}}]\) et regarde la limite de chaque facteur.
tu as bien : \(f(x)=(x+1)e^{2x} - x^2 -3x -4\), c'est cela ?
Par exemple pour \(+\infty\) : qui est le terme le plus fort (c'est à dire qui croît le plus vite en \(+\infty\) ? C'est \(e^{2x}\).
Factorise par \(e^{2x}\) : \(f(x)=e^{2x}[x+1 -\frac{ x^2}{e^{2x}} -\frac{3x}{e^{2x}} -\frac{4}{e^{2x}}]\) et regarde la limite de chaque facteur.