équation produit
équation produit
bonjour, j'ai un énoncé qui me dit:
résoudre x^3-2x-1=0 sachant que x^3-2x-1=(x+1)(x²-x-1)
besoin d'aide car en faisant:
soit x+1=0
x=-1
soit x²-x-1=0
x²-x=1
...et après bloquée.
résoudre x^3-2x-1=0 sachant que x^3-2x-1=(x+1)(x²-x-1)
besoin d'aide car en faisant:
soit x+1=0
x=-1
soit x²-x-1=0
x²-x=1
...et après bloquée.
-
- Messages : 2177
- Enregistré le : mer. 5 sept. 2007 12:03
Re: équation produit
Bonjour,
êtes-vous en seconde?
Si oui, n'y a-t-il que cette question dans votre texte?
Votre démarche est correcte et pour vous expliquer la suite, il faut me préciser ce que je vous demande.
A bientôt
êtes-vous en seconde?
Si oui, n'y a-t-il que cette question dans votre texte?
Votre démarche est correcte et pour vous expliquer la suite, il faut me préciser ce que je vous demande.
A bientôt
Re: équation produit
en fait c'est tout un exercice avec une courbe, des tas de démarches a la calculatrice,... la fonction de départ est: f(x)=x^3-2x-1.
énoncé: Léa se demande s'il existe un nombre réel qui une fois élevé au cube, a la meme valeur que son double augmenté de 1.
soit la fonction: f(x)=x^3-2x-1 ou x^3=2x+1.
j'ai tracer une courbe, fait des démarches a la calculatrice, ensuite j'ai résolu graphiquement f(x)=0, puis prouvé que pour tout réel x:
x²-x-1=(x-1/2)²-5/4
et pour tout x:
x^3-2x-1=(x+1)(x²-x-1)
et maintenant je dois résoudre x^3-2x-1=0.
oui je suis en seconde...
énoncé: Léa se demande s'il existe un nombre réel qui une fois élevé au cube, a la meme valeur que son double augmenté de 1.
soit la fonction: f(x)=x^3-2x-1 ou x^3=2x+1.
j'ai tracer une courbe, fait des démarches a la calculatrice, ensuite j'ai résolu graphiquement f(x)=0, puis prouvé que pour tout réel x:
x²-x-1=(x-1/2)²-5/4
et pour tout x:
x^3-2x-1=(x+1)(x²-x-1)
et maintenant je dois résoudre x^3-2x-1=0.
oui je suis en seconde...
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: équation produit
Bonjour,
Une fois la factorisation effectuée, résoudre ton équation revient à résoudre une équation produit nul
On regarde donc chacun des facteurs égaux à 0
AB=0⟺(A=0ouB=0) soit
x+1=0 ou x2−x−1=0 la première est facile, la deuxième n'est pas accessible directement au niveau seconde c'est pour cela qu'on t'a fait trouver une autre écriture : x2−x−1=0 équivaut à (x−12)2−54=0, tu passes le 54 de l'autre côté et tu utilises la propriété :
X2=α⟺(x=√αouX=−√α)
Une fois la factorisation effectuée, résoudre ton équation revient à résoudre une équation produit nul
On regarde donc chacun des facteurs égaux à 0
AB=0⟺(A=0ouB=0) soit
x+1=0 ou x2−x−1=0 la première est facile, la deuxième n'est pas accessible directement au niveau seconde c'est pour cela qu'on t'a fait trouver une autre écriture : x2−x−1=0 équivaut à (x−12)2−54=0, tu passes le 54 de l'autre côté et tu utilises la propriété :
X2=α⟺(x=√αouX=−√α)
Re: équation produit
merci beaucoup j'ai avancé, mais une fois que j'ai:
(x-1/2)²=5/4
je ne comprend pas exactement car ce n'est pas une equation produit et je me retrouve toujours avec soit un x² ou une racine de x...
pourriez vous m'expliquer davantage?
merci
(x-1/2)²=5/4
je ne comprend pas exactement car ce n'est pas une equation produit et je me retrouve toujours avec soit un x² ou une racine de x...
pourriez vous m'expliquer davantage?
merci
-
- Messages : 10401
- Enregistré le : lun. 30 août 2010 11:15
Re: équation produit
Reprends ce que je t'ai dit avec X=x−12, tu auras alors deux solutions pour x.
Cherche encore un peu
Cherche encore un peu