Boîte parallélépipédique

Retrouver tous les sujets résolus.
SoS-Math(35)
Messages : 524
Enregistré le : lun. 7 nov. 2022 09:59

Re: Boîte parallélépipédique

Message par SoS-Math(35) » sam. 14 déc. 2024 18:29

Il faut juste que tu multiplies l expression développée que tu as trouvée pour l identité remarquable par la hauteur qui est égale à x.
Lorenzo

Re: Boîte parallélépipédique

Message par Lorenzo » sam. 14 déc. 2024 19:08

C'est ce que j'ai fait mais je ne trouve pas le même résultat !
4x² - 160x + 1600 x5 ne donne pas 4x au cube - 160x² + 1600x.
Je ne comprends pas comment on peut retrouver des x au cube en ayant des x².
Je nage complètement !
Merci d'avance de vos lumières.
SoS-Math(35)
Messages : 524
Enregistré le : lun. 7 nov. 2022 09:59

Re: Boîte parallélépipédique

Message par SoS-Math(35) » sam. 14 déc. 2024 19:15

Tu ne dois pas multiplier par 5 mais par x toute l expression.
Tu retrouves bien des x la u cube en multipliant x au carré par x.
Lorenzo

Re: Boîte parallélépipédique

Message par Lorenzo » sam. 14 déc. 2024 19:37

Ah d'accord, là je comprends mieux mon erreur. Je retrouve bien le bon résultat.
Merci beaucoup de vos précieuses réponses.

Bonne soirée.
SoS-Math(35)
Messages : 524
Enregistré le : lun. 7 nov. 2022 09:59

Re: Boîte parallélépipédique

Message par SoS-Math(35) » sam. 14 déc. 2024 20:11

A bientôt sur le forum.

Sos math