Convergence d une somme
Convergence d une somme
J ai eu cette exercice a faire aujourdhui ,mais je ne comprend pas .J'ai jamais fait ce genre d 'exercice .
C est un exercice de recherche,on doit s'aider de la video de
Ivon monka ,mais j ai toujour rien compris ,desolé
Si il y aurait des gens pour m aider sa serait grave gentil
Je doit le rendre lundi le devoir c un peu urgent
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: Convergence d une somme
Bonjour Charlotte,
Sur ce forum nous ne faisons pas les exercices des élèves, on les aide à les résoudre.
A quelle question, as-tu besoin d'aide ?
SoSMath.
Sur ce forum nous ne faisons pas les exercices des élèves, on les aide à les résoudre.
A quelle question, as-tu besoin d'aide ?
SoSMath.
-
- Messages : 6351
- Enregistré le : mer. 5 sept. 2007 12:10
Re: Convergence d une somme
Bonjour Charlotte,
Voici le début :
Pour la question 1a, il faut commencer par calculer vn en fonction de n ...
vn=un+1un=(n+1)22n+1n22n=...
Je te laisse simplifier.
SoSMath.
Voici le début :
Pour la question 1a, il faut commencer par calculer vn en fonction de n ...
vn=un+1un=(n+1)22n+1n22n=...
Je te laisse simplifier.
SoSMath.
Re: Convergence d une somme
En faite j'ai besoin de l aide pour chaque question,je n ai pas encore fait ce genre d exercice.
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Convergence d une somme
Bonjour Charlotte,
1)a) Peux tu me dire quelle est la limite de 12(1+1n)2 ?
Essayer de transformer l'expression donnée par sos-math(9) afin de trouver l'expression pour trouver l'expression en fonction de n égale à 12(1+1n)2 .
1)a) Peux tu me dire quelle est la limite de 12(1+1n)2 ?
Essayer de transformer l'expression donnée par sos-math(9) afin de trouver l'expression pour trouver l'expression en fonction de n égale à 12(1+1n)2 .
-
- Messages : 1360
- Enregistré le : lun. 12 oct. 2015 10:33
Re: Convergence d une somme
Bonjour Charlotte,
1b) Remarque : Montrer que vn > 1/2 revient à montrer que (1 + 1/n)² > 1. Je pense que tu peux le faire !
1) c) Remarque : Résoudre vn < 3/4 revient à résoudre (1 + 1/n)² < 3/2. A toi de résoudre cette dernière inéquation.
1b) Remarque : Montrer que vn > 1/2 revient à montrer que (1 + 1/n)² > 1. Je pense que tu peux le faire !
1) c) Remarque : Résoudre vn < 3/4 revient à résoudre (1 + 1/n)² < 3/2. A toi de résoudre cette dernière inéquation.