par meily » jeu. 11 janv. 2018 17:19
bonjour, démontrer pour tout entier naturel n ;
4 ^n+ 2 est divisible par 3
je bloque sur la partie hérédité : ( pour arriver a: 4^n+1+2 =3k )
j'ai fait : 4^n+2 =3k
4(4^n+2) =3*4k
4^n+1+ 4*2 =3*4k
4^n+1+ 8 =3*4k c'est au 8 je bloque dc j'ai transformer mon 8 de manière a faire a apparaitre un 2 et un 3
4^n+1+2+3+3 = 4k*3*(-3)(-3)
donc 4^n+1+2 = 3 ( 4k+1)
bonjour, démontrer pour tout entier naturel n ;
4 ^n+ 2 est divisible par 3
je bloque sur la partie hérédité : ( pour arriver a: 4^n+1+2 =3k )
j'ai fait : 4^n+2 =3k
4(4^n+2) =3*4k
4^n+1+ 4*2 =3*4k
4^n+1+ 8 =3*4k c'est au 8 je bloque dc j'ai transformer mon 8 de manière a faire a apparaitre un 2 et un 3
4^n+1+2+3+3 = 4k*3*(-3)(-3)
donc 4^n+1+2 = 3 ( 4k+1)