résoudre une inéquation avec quotient et racine carré

Retrouver tous les sujets résolus.
Répondre
hbx

résoudre une inéquation avec quotient et racine carré

Message par hbx » jeu. 29 juin 2023 15:42

Bonjour,

J'ai cette inéquation à résoudre mais je suis bloqué car je n'arrive pas à interpréter le résultat. Merci d'avance.

\(\frac{-1}{2} \geq \frac{x}{2*\sqrt{x^2+1}} \Leftrightarrow \)

\(-2\sqrt{x^2+1} \geq 2x \Leftrightarrow \)

\(-\sqrt{x^2+1} \geq x \Leftrightarrow \)

\((-\sqrt{x^2+1})^2 \geq x^2 \Leftrightarrow \)

\(x^2+1 \geq x^2 \Leftrightarrow \)

\(1 \geq x^2-x^2 \Leftrightarrow \)

\(1 \geq 0\)
SoS-Math(33)
Messages : 3462
Enregistré le : ven. 25 nov. 2016 14:24

Re: résoudre une inéquation avec quotient et racine carré

Message par SoS-Math(33) » ven. 30 juin 2023 06:59

Bonjour,
attention il y a une erreur dans ta résolution

\(\dfrac{-1}{2} \geq \dfrac{x}{2\sqrt{x^2+1}} \Leftrightarrow \)

\(-2\sqrt{x^2+1} \geq 2x \Leftrightarrow \)

\(-\sqrt{x^2+1} \geq x \Leftrightarrow \)

Il y a deux cas :
1) \(x \geq 0 \)
\(-\sqrt{x^2+1} \leq 0\) donc l'inéquation n'a pas de solution

2) \(x \leq0\)
les deux membres de l’inéquation sont négatifs donc quand tu prends les carrés il faut changer le sens de l'inégalité.

\((-\sqrt{x^2+1})^2 \leq x^2 \Leftrightarrow \)

\(x^2+1 \leq x^2 \Leftrightarrow \)

\(1 \leq x^2-x^2 \Leftrightarrow \)

\(1 \leq 0\) l'inégalité est fausse donc l'inéquation n'a pas de solution

Est-ce plus clair?
Bonne continuation
SoS-math
hbx

Re: résoudre une inéquation avec quotient et racine carré

Message par hbx » ven. 30 juin 2023 13:45

Donc si j'élève au carré :

\(-\sqrt{x^2+1} \geq x\)

Je dois changé le signe peu importe si x est >= à 0 à cause du signe - de la racine ?
SoS-Math(33)
Messages : 3462
Enregistré le : ven. 25 nov. 2016 14:24

Re: résoudre une inéquation avec quotient et racine carré

Message par SoS-Math(33) » ven. 30 juin 2023 17:00

La fonction carré est décroissante sur ]\(-\infty \) ; 0] et croissante sur [0 ; \(+\infty\)[,
donc si tu es sur ]\(-\infty ; 0]\) quand tu prends le carré des deux membres tu dois changer le sens de l'inégalité
Exemple -\(2 \geq -3 \) et \((-2)^2\leq(-3)^2\) ( \(4\leq 9\))

Quand dans la résolution tu élèves au carré, tu es dans le cas \(x \leq 0\)
Dans le cas \(x \geq 0\) il n'y a pas de solution car avec l'équation tu obtiens un nombre négatif plus grand qu'un nombre positif ce qui n'est pas possible.
SoS-math
hbx

Re: résoudre une inéquation avec quotient et racine carré

Message par hbx » ven. 30 juin 2023 17:21

D'accord merci pour votre réponse.
SoS-Math(33)
Messages : 3462
Enregistré le : ven. 25 nov. 2016 14:24

Re: résoudre une inéquation avec quotient et racine carré

Message par SoS-Math(33) » ven. 30 juin 2023 17:26

Bonne continuation
A bientôt sur le forum
SoS-math
Répondre