Forme trigonométrique dans les complexes

Retrouver tous les sujets résolus.
Répondre
Jean

Forme trigonométrique dans les complexes

Message par Jean » mar. 30 mars 2021 16:34

Bonjour, j'ai un exercice à faire en mathématiques expertes et je suis bloqué sur la question 3. Le voici :
somme de cosinus et sinus.jpg
J'ai essayé de développé de chaque côté pour voir si ça fonctionnait mais je n'y arrive pas, je ne sais pas vraiment comment m'y prendre, quelqu'un pourrait m'aider ?
Merci d'avance
SoS-Math(33)
Messages : 2736
Enregistré le : ven. 25 nov. 2016 14:24

Re: Forme trigonométrique dans les complexes

Message par SoS-Math(33) » mar. 30 mars 2021 17:05

Bonjour Jean,
\(1-e^{ix} = e^{i\frac{x}{2}}(e^{-i\frac{x}{2}}-e^{i\frac{x}{2}})\)
\(= e^{i\frac{x}{2}}(-2isin(\frac{x}{2}))\)
\(=-2ie^{i\frac{x}{2}}sin(\frac{x}{2})\)
Est-ce plus clair?
Tu utilises le même principe pour la deuxième égalité.
SoS-math
Jean

Re: Forme trigonométrique dans les complexes

Message par Jean » mar. 30 mars 2021 18:13

Merci beaucoup pour votre aide, j'ai réussi l'autre.
SoS-Math(33)
Messages : 2736
Enregistré le : ven. 25 nov. 2016 14:24

Re: Forme trigonométrique dans les complexes

Message par SoS-Math(33) » mar. 30 mars 2021 18:15

Bonne continuation
SoS-math
Jean

Re: Forme trigonométrique dans les complexes

Message par Jean » mer. 31 mars 2021 11:55

Bonjour,
J'ai fait les questions 4 et 5 mais je ne comprend pas très bien la 6, quand je remplace x par 2kpi rien ne m'apparaît, je ne trouve pas de simplification ou de chose comme ça. Je pense que c'est parce que je me suis trompé à la question 5. Voici ce que j'ai fait :
Snapchat-785997884.jpg
Quelqu'un pourrait me dire si c'est bon ? Merci d'avance.
SoS-Math(33)
Messages : 2736
Enregistré le : ven. 25 nov. 2016 14:24

Re: Forme trigonométrique dans les complexes

Message par SoS-Math(33) » mer. 31 mars 2021 12:57

Bonjour,
ce que tu as fait semble tout à fait correct.
Tu pouvais faire plus court en écrivant directement
\(e^{i\frac{nx}{2}} = cos (\frac{nx}{2}) + isin(\frac{nx}{2})\) et ensuite en développant.
Pour la question 6) il te faut reprendre les deux expressions C et S du début en remplaçant \(x\) par \(2k\pi\) et ensuite faire le calcul .
Je te laisse poursuivre
SoS-math
Jean

Re: Forme trigonométrique dans les complexes

Message par Jean » mer. 31 mars 2021 13:58

Merci, je trouve donc C=n+1 car cos(x2kpi)=1 et S=0 car sin de (x2kpi)=0 est-ce bon ?
Pour la 7 je dois réutiliser la formule de la question 2 c'est ça ?
SoS-Math(33)
Messages : 2736
Enregistré le : ven. 25 nov. 2016 14:24

Re: Forme trigonométrique dans les complexes

Message par SoS-Math(33) » mer. 31 mars 2021 15:04

Bonjour,
oui tes calculs sont corrects,
pour la question 7) il faut prendre ce que tu as fait jusqu'à la question 5) avec \(x = \frac{\pi}{n}\)
SoS-math
Répondre