Modèles

Retrouver tous les sujets résolus.
Répondre
Rania SSVT

Modèles

Message par Rania SSVT » mar. 23 févr. 2021 14:49

J'ai des exercices d'entrainements à faire mais je ne suis pas sûre de mes réponses , je ne maitrise pas encore le cours sur les modèles est-ce que vous pouvez m'expliquer le concept et les différences pour malthus (latence...)et logistique (Allee)?



Exercice 1:

I. On considère les solutions de l'équation de Malthus x'(t)=5x(t).
a. Ni x(t)=3*exp^(6t), ni x(t)=7*exp^(5t) est une solution.
b. Les fonctions x(t)=3*exp^(6t) et x(t)=7*exp^(5t) sont des solutions.
c. La fonction x(t)=3*exp^(6t) est une solution, la fonction x(t)=7*exp^(5t) n'est pas une solution.
d. La fonction x(t)=7*exp^(5t) est une solution, la fonction x(t)=3*exp^(6t) n'est pas une solution.

J'ai mis la d

Exercice 2 :
On considère les solutions de l'équation de Malthus x'(t)=r*x(t)
On suppose que la condition initiale est x0=10
a. On n'a pas suffisamment d'informations pour conclure.
b. Les solutions de cette équation sont toujours positives.
c. Les solutions de cette équation sont croissantes car la condition initiale est positive
d. Les solutions de cette équation sont toujours décroissantes

J'ai choisi la a car on n'a pas la valeur de r qui va déterminer si ça va être toujours
croissant ou toujours décroissant.

Exercice 3:
Voici le champ de vecteurs d'un système Lotka-Volterra dont l'équilibre est (S,R)=(4,2).

On suppose que les populations initiales sont R0=1 et S0=4 . (R pour requins et S pour sardines)
Alors à court terme de nombre de sardines...
a. Aucune des autres réponses n'est correcte
b.... va augmenter
c.... sera constante
d.... va diminuer
J'ai mis va augmenter car la flèche va vers la droite mais est ne descend pas et ne monte pas donc c'est quand même une augmentation ?

image en pièce jointe
image.PNG
image.PNG (42.59 Kio) Vu 297 fois
Exercice 4 :
On considère l'équation différentielle y'=2y(1-exp^-2t). Si t est grand cette éqaution ressemble...

a. Aucune des autres réponses n'est correcte.
b....à la fonction exponentielle 1-exp^-2t
c.... au modèle de Malthus y'=exp^-2t
d. à l'équation différentielle y'=0
J'ai choisi la b car quand t est grand (1-exp^-2t) vaut 1 donc c'est croissant.

Exercice 5:
On considère l'équation différentielle :
N'=3N(1-N/2000)N-100/2000
Soit N(t) la solution pour la condition initiale No=100.
Quelle valeur aura N(t) pour t grand ?
a.2000
b.10
c. 100
d. Aucune des trois
J'ai choisi 2000 mais je ne comprend pas pourquoi on parle de t grand alors que c'est pour le modèle de Malthus ça non ?

Exercice 6 :
On suppose que les populations sont So=3, Ro=3
Alors à court terme, le nombre de requins...
a.... va diminuer
b.... sera constante
c..... va augmenter
d..... Aucun des autres réponses n'est correcte.
image en pièce jointe
image.PNG
image.PNG (42.59 Kio) Vu 297 fois
Pour celui-ci j'ai mis que ca va diminer.


Exercice 7 :

On considère l'équation différentielle: y'=-2y+6
et son équilibre y=3
Cet équilibre est...
a. ni stable, ni instable
b. instable
c. stable
d. instable si la condition initiale est plus grande que 2
J'ai mis instable mais je ne sais pas si il faut une condition

Exercice 8 :
On considère l'équation différentielle: y'=4y-1
et son équilibre y=0,25
Cet équilibre est...
a. stable si la condition initiale est plus grande que 4
b. instable
c. stable
d. instable si la condition initiale est plus grande que 1

Exercice 9:

On considère les solutions(x(t),y(t)) d'un système de Lotka-Volterra.
Veuillez choisir une réponse:

a. Si la population x est absente, la population y est un modèle de Malthus
b. Si t->(+l'infini ), les solutions vont s'approcher de l'équilibre du système
c. Si x(t) est croissante, alors y(t) est décroissante
d. Si x(t) est croissante, alors y(t) est aussi croissante

Exercice 10 :
Voici le graphe de la fonction f(y)=-0,005y²+y-20
en pièce jointe
image 3.PNG
image 3.PNG (8.19 Kio) Vu 297 fois
On considère l'équation différentielle y'=-0,005y²+y-20
Soit y(t) la solution de cette équation différentielle pour la condition initiale y0=100
Alors à long terme, la solution y(t) sera proche de ...
a. Aucune des autre réponses n'est correcte
b.100
c.22
d.178

Exercice 11:
image en pièce jointe
image 3.PNG
image 3.PNG (8.19 Kio) Vu 297 fois
On considère l'équation différentielle y'=-0,005y²+y-20
Donner l'équilibre stable de cette équation différentielle :

a. 178
b.22
c.100
d. Aucune de ces valeurs est un équilibre stable

Merci
SoS-Math(31)
Messages : 1262
Enregistré le : lun. 12 oct. 2015 10:33

Re: Modèles

Message par SoS-Math(31) » mar. 23 févr. 2021 16:09

Bonjour Rania,
Exercice1, c'est bien.
Exercice 2 :
l'équation est-elle x'(t) = r² x(t) ?
SoS-Math(31)
Messages : 1262
Enregistré le : lun. 12 oct. 2015 10:33

Re: Modèles

Message par SoS-Math(31) » mar. 23 févr. 2021 16:14

Exercice 4 :
si t tend vers + infini alors \(e^{-2t}\) tend vers 0 donc y' = 2y ?
SoS-Math(31)
Messages : 1262
Enregistré le : lun. 12 oct. 2015 10:33

Re: Modèles

Message par SoS-Math(31) » mar. 23 févr. 2021 16:17

Modéle exponentiel de Malthus : solutions de y' = ay : f(t) = K e\(^{at}\)
loi logique de Verhulst ; solutions de y' = ay + b
Rania SSVT

Re: Modèles

Message par Rania SSVT » mar. 23 févr. 2021 17:27

Pour l'exercice 2 ce n'est pas r² j'ai fais r fois .

Pour l'exercice 4 donc la a, aucune des propositions n'est exacte
SoS-Math(31)
Messages : 1262
Enregistré le : lun. 12 oct. 2015 10:33

Re: Modèles

Message par SoS-Math(31) » mar. 23 févr. 2021 18:33

x'(t) = r x(t) avec r une constante alors les solutions sont de la forme f(t) = K \(e^{rt}\) où K est une constante que l'on détermine avec la condition initiale.
f(0) = 10 donne K = 10 alors f(t) = 10 \(e^{rt}\) > 0.
Cela doit t'aider à faire les questions suivante notamment la question 4.
SoS-Math(31)
Messages : 1262
Enregistré le : lun. 12 oct. 2015 10:33

Re: Modèles

Message par SoS-Math(31) » mar. 23 févr. 2021 18:39

Voici un lien vers une vidéo pour les exercices 7 et 8.
A toi de jouer.
https://youtu.be/F_LQLZ8rUhg
Rania SSVT

Re: Modèles

Message par Rania SSVT » mar. 23 févr. 2021 22:13

Pour l'exercice 2 c'est la b
Pour l'exercice 3 c'est la b
Pour l'exercice 4 c'est la c
Pour l'exercice 5 je comprends vraiment pas
Pour l'exercice 6 c'est la c
Pour l'exercice 7 c'est la c car on a -2<3
Pour l'exercice 8 c'est la b car 4 >0,25
Pour l'exercice 9 c'est la a
Pour l'exercice 10 c'est la b
Pour l'exercice 11 c'est la d car je trouve -200

Merci de me corriger
Rania SSVT

Re: Modèles

Message par Rania SSVT » mar. 23 févr. 2021 22:32

Pour l'exercice 2 c'est la b
Pour l'exercice 3 c'est la b
Pour l'exercice 4 c'est la c
Pour l'exercice 5 je comprends vraiment pas
Pour l'exercice 6 c'est la c
Pour l'exercice 7 c'est la c car on a -2<3
Pour l'exercice 8 c'est la b car 4 >0,25
Pour l'exercice 9 c'est la a
Pour l'exercice 10 c'est la b
Pour l'exercice 11 c'est la d car je trouve -200

Merci de me corriger
Rania SSVT

Re: Modèles

Message par Rania SSVT » mer. 24 févr. 2021 18:35

Bonsoir est-ce que vous pouvez me confirmer mes réponses pour les réviser pour demain (j'ai un contrôle) ?

Je vous remercie
sos-math(21)
Messages : 8777
Enregistré le : lun. 30 août 2010 11:15

Re: Modèles

Message par sos-math(21) » ven. 26 févr. 2021 18:28

Bonjour,
pour les équations avec système de Volterra, tes réponses semblent correctes.
Pour les équilibres stables ou instables, je te suggère de regarder le document ci-contre : https://math.unice.fr/~diener/MpB2011-2012/EDO.pdf
Je ne eux pas t'en dire plus, les équations différentielles sont loin pour moi.
Bonne continuation
Répondre