Trouver l'entier naturel a

Retrouver tous les sujets résolus.
Invit

Trouver l'entier naturel a

Message par Invit » sam. 30 janv. 2021 10:34

Bonjour
Les diviseurs premiers du nombre a sont 2 et 3 , le nombre de diviseurs du a² égale à 3 fois le nombre de diviseurs de a. Trouver a .
Jai essayé d'appliquer la règle pgcd × ppcm = a × a² mais apparemment ça n'aide pas et je ne vois pas comment y faire
Merci pour votre aide
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » sam. 30 janv. 2021 11:10

Bonjour,
si \(2\) et \(3\) sont les diviseurs premiers de \(a\), alors \(a=2^p\times 3^q\) ce qui signifie que \(a\) possède \((p+1)(q+1)\) diviseurs.
Lorsqu'on prend le carré, on a \(a^2=2^{2p}\times 3^{2q}\) et le nombre de diviseurs est alors \((2p+1)(2q+1)\).
Cela te donnera une condition sur \(p\) et \(q\)... Je te laisse chercher un peu.
Bonne continuation
Invit

Re: Trouver l'entier naturel a

Message par Invit » sam. 30 janv. 2021 11:39

Merciii
OK donc on a à résoudre l'équation (2p+1)(2q+1)=3(p+1)(q+1) ce qui donne p+q=pq
et d'après gauss puisque p/p+q donc p/q et de l'autre coté puisque q/p+q donc q/p ce qui signifie que p=q
et en remplaçant p par q (par éxample) dans l'équation : p+q=pq on aura 2q=q² ce qui donne q=p=2 d'où a=36 .
C'est géniale merci, mais est ce que y a pas d'autres façon? est ce qu'on est obligé d'enlever les parenthèses pour résoudre l'équation dessus : (2p+1)(2q+1)=3(p+1)(q+1) ?
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » sam. 30 janv. 2021 11:44

Bonjour,
tu as fait une erreur de calcul dans ton équation \((2p+1)(2q+1)=3(p+1)(q+1)\)
donne : \(4pq+2p+2q+1=3(pq+p+q+1)\) soit \(4pq+2p+2q+1=3pq+3p+3q+3\) soit \(pq-p-q-2=0\)
et c'est là qu'il faut un peu ruser : débrouille-toi pour factoriser les termes en \(p\) et \(q\) cela te donnera une équation de la forme \((... - ...)(...-...)=3\) ce qui te permettra d'obtenir des valeurs pour \(p\) et \(q\).
Ensuite, il s'agira de vérifier que les entiers ainsi construits pour les valeurs de \(p\) et \(q\) vérifient bien la condition de départ.
Bonne continuation
Invit

Re: Trouver l'entier naturel a

Message par Invit » sam. 30 janv. 2021 12:22

Oui désolé pour l'erreur
je trouve (q-1)(p-1)=3
et d'après gauss (si je me trompe pas) 3 est premier et 3/(q-1)(p-1) donc 3/q-1 ou bien 3/p-1
si 3/q-1 => q-1≡0[3] => q≡1[3] => q=3k+1 et en remplaçant dans l'équation on trouve (3k+1-1)(p-1)=3
donc 3k(p-1)=3 => k(p-1)=1 => k=1 et p=2 forcément. et en remplaçant la valeur de k dans q=3k+1 on aura q=4
d'où a=2²×3^4 = 4×81 = 324.
et si 3/p-1 on trouve symétriquement et logiquement q=2 et p=4 d'où a=2^4×3² = 16×9 = 144
Donc finalement a∈{144 ; 324}
Oui j'ai vérifié et normalement ça doit être juste (je l'espère), mais c'est long quand même
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » sam. 30 janv. 2021 12:28

Bonjour,
ta démarche est correcte mais tu peux aller un peu plus vite en disant que la seule décomposition de 3 en produit d'entiers est \(3=3\times 1\).
Tu as donc deux cas symétriques :
  • soit \(p-1=1\) et \(q-1=3\) ce qui mène à \(p=2\) et \(q=4\), puis \(a=2^2\times 3^4=324\)
  • soit \(p-1=3\) et \(q-1=1\) ce qui mène à \(p=4\) et \(q=2\), puis \(a=2^4\times 3^2=144\)
comme on a travaillé avec des implications, on a obtenu deux candidats dont il faut ensuite vérifier que le nombre de diviseurs vérifie la condition de départ.
Bonne conclusion
Invit

Re: Trouver l'entier naturel a

Message par Invit » sam. 30 janv. 2021 12:51

👍 oui c'est joli, merci merci pour tous vos éclaircissements
Oui les 2 valeurs de a vérifient la condition de départ .

J'ai une autre question d'ordre théorique si je peux me permettre concerne l'analyse
Est ce qu'on peut dire qu'une fonction f est dérivable sur une union d'intervalles par exemple R* ? ou bien on doit séparer les intervalles et dire que f est dérivable sur ]-∞ ; 0[ et ]0 ; +∞[ ?
Parce que j'entends par fois que mathématiquement c'est faux de dire f est dérivable sur R*, et en parallèle je tombe beaucoup sur cette expression (dérivabilité sur union d'intervalles) sur des livres, polycopies, sites internet .....
Pourriez vous m'éclaircir sur ce point svp ? sans tenir compte du niveau terminal ou pas, une explication mathématique tout court. Merci infiniment 👍
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » sam. 30 janv. 2021 14:21

Bonjour,
l'habitude de prendre des intervalles pour parler de la dérivabilité sert plutôt à simplifier les choses car en fait une fonction peut être dérivable sur autre chose qu'un intervalle : la notion topologique qui convient plutôt est la notion d'ouvert. Comme une réunion d'ouverts est un ouvert, alors on peut bien parler de dérivabilité sur l'ouvert \(\mathbb{R}^{*}=]-\infty\,;\,0[\cup]0\,;\,+\infty[\).
Voilà la réponse que je formulerai : pour simplifier les choses et par convention, on écrit les propriétés sur un intervalle mais cela peut rester vrai (mais pas tout le temps) sur des réunions d'intervalles : c'est le cas lorsque l'on prend des réunions d'intervalles ouverts.
Est-ce plus clair ?
Invit

Re: Trouver l'entier naturel a

Message par Invit » sam. 30 janv. 2021 17:34

Re-bonjour
D'accord oui c'est clair, donc mathématiquement ce n'est pas faux de dire que f est dérivable sur son ensemble de définition qui est une réunion d'intervalles comme ]-∞ ; -1[∪]3 ; +∞[ au lieu de dire qu'elle est dérivable sur ]-∞ ; -1[ et sur ]3 ; +∞[ .
Dans le même cadre, et pour ce qui est du sens de variations, oui je sais qu'une fonction qui soit décroissante sur ]-∞ ; 0[ et sur ]0 ; +∞[ ce n'est pas forcément qu'elle soit décroissante sur la réunion comme la fonction inverse, et je sais que si une fonction qui est croissante sur une réunion d'intervalles elle l'est aussi sur chaque intervalle ( y a une implication là). mais ma question est la suivante : " si une fonction est croissante sur une réunion d'intervalles, est ce que de dire qu'elle est croissante sur chaque intervalle est rigoureusement juste ?" bien que c'est juste analytiquement bien sûr puisque y a implication
voici un bon exemple d'une fonction à une seule expression \(f(x)=\frac{e^{2x}-1}{x}\)
là pour l'étude de monotonie, f est croissante sur R*, mais à mon avis je crois que c'est faux de dire qu'elle est croissante sur ]-∞ ; 0[ et sur ]0 ; +∞[ (j'entend par faux coté rigueur mathématique seulement car bien entendu analytiquement ce n'est pas faux). Voila est ce que mon raisonnement est juste ?
j'attends passionnément votre explication car cette question me casse vraiment la tête. MERCI INFINIMENT
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » dim. 31 janv. 2021 08:54

Bonjour,
je ne comprends pas trop ta question car j'ai l'impression que tu y as répondu.
En reprenant la définition algébrique d'une fonction croissante, on a clairement l'implication que si f est croissante sur une réunion d'intervalles alors elle l'est sur chacun des intervalles.
La réciproque est fausse comme tu l'as dit en considérant la fonction inverse.
C'est ce genre de nuance qui fait que dans le secondaire, on évite de parler de sens de variation sur une réunion d'intervalle et qu'on se limite à un intervalle, notamment pour simplifier les utilisations qui en découlent, comme le théorème des valeurs intermédiaires.
Pour ton exemple, ta fonction est prolongeable par continuité en 0 (un prolongement \(\mathscr{C}^{1}\) est même vrai), ce qui fausse un peu le problème. Par ailleurs, je ne vois pas en quoi elle représente un "contre-exemple" ou alors je n'ai pas compris ta demande.
Merci de m'éclairer.
Invit

Re: Trouver l'entier naturel a

Message par Invit » dim. 31 janv. 2021 10:00

Non, vous m'avez tout expliqué, merci beaucoup, peut être que j'ai mal formulé ma demande mais vous m'avez répondu clairement
"C'est ce genre de nuance qui fait que dans le secondaire, on évite de parler de sens de variation sur une réunion d'intervalle et qu'on se limite à un intervalle"
SoS-Math(9)
Messages : 6238
Enregistré le : mer. 5 sept. 2007 12:10

Re: Trouver l'entier naturel a

Message par SoS-Math(9) » dim. 31 janv. 2021 10:53

Merci pour ta réponse.

A bientôt sur le forum.

SoSMath.
Invité

Re: Trouver l'entier naturel a

Message par Invité » mar. 2 févr. 2021 10:17

Bonjour,
Si f une fonction définie et continue sur [a;b[ (par exemple) et elle est dérivable à droite de a, donc on peut dire qu'elle est dérivable en a malgré que la dérivé à gauche n'existe pas ? on peut prendre l'exemple de f(x)=x√x qui est définie sur R+ et qui est dérivable à droite de 0
Merci
sos-math(21)
Messages : 8785
Enregistré le : lun. 30 août 2010 11:15

Re: Trouver l'entier naturel a

Message par sos-math(21) » mar. 2 févr. 2021 12:51

Bonjour,
une fonction est dérivable sur un intervalle réel fermé et borné (c'est-à-dire sur un segment réel) non réduit à un point si elle est dérivable sur l'intérieur de cet intervalle et dérivable à droite en sa borne gauche, et dérivable à gauche en sa borne droite.
Dans le cas de ta fonction, elle n'est pas définie à gauche de 0 donc on n'étudie la dérivabilité qu'à droite et on conclut qu'elle est dérivable en 0 car la limite du taux d'accroissement est égal à 0.
Je n'avais pas été clair dans mon message précédent car je m'étais attaché à la dérivabilité à gauche et à droite, ce qui ne correspondait pas à la situation évoquée.
Bonne continuation
Invité

Re: Trouver l'entier naturel a

Message par Invité » mar. 2 févr. 2021 23:20

ok merci beaucoup
Verrouillé