étude et représentation graphique d'une fonction
étude et représentation graphique d'une fonction
bonsoir j'ai un exercices que n'arrive pas à bien comprendre et j'aimerais avoir un peu d'aide afin de commencer à traiter.
soit la fonction f défini sur R par f(x)=((3*x^2)+(a*x)+b)/(x^2+1)
1) sachant que la courbe représentative de f passe par les points A(0;3) et B(1;5), démontrer que pour tout nombre x,
f(x)=((3*x^2)+(4*x)+3)/(x^2+1)
Merci d'avance
soit la fonction f défini sur R par f(x)=((3*x^2)+(a*x)+b)/(x^2+1)
1) sachant que la courbe représentative de f passe par les points A(0;3) et B(1;5), démontrer que pour tout nombre x,
f(x)=((3*x^2)+(4*x)+3)/(x^2+1)
Merci d'avance
-
- Messages : 6336
- Enregistré le : mer. 5 sept. 2007 12:10
Re: étude et représentation graphique d'une fonction
Bonjour Jean,
Le principe est simple, tu as deux inconnues (a et b) dans ta fonction f, il te faut donc 2 équations avec a et b qui te seront données par le fait que les points A et B appartiennent à la courbe de f.
Voici comment obtenir la 1ère équation :
A(0;3) appartient à la courbe de f
<=> f(xA) = yA
<=> f(0) = 3
<=> ((3*0^2)+(a*0)+b)/(0^2+1) = 3
<=> b/1 = 3
<=> b = 3.
Je te laisse trouver la 2ème équation et ainsi calculer a.
SoSMath.
Le principe est simple, tu as deux inconnues (a et b) dans ta fonction f, il te faut donc 2 équations avec a et b qui te seront données par le fait que les points A et B appartiennent à la courbe de f.
Voici comment obtenir la 1ère équation :
A(0;3) appartient à la courbe de f
<=> f(xA) = yA
<=> f(0) = 3
<=> ((3*0^2)+(a*0)+b)/(0^2+1) = 3
<=> b/1 = 3
<=> b = 3.
Je te laisse trouver la 2ème équation et ainsi calculer a.
SoSMath.
Re: étude et représentation graphique d'une fonction
bonjour.
si on poursuit avec la deuxième équation, comme f(1)=5 on aura 3+a+b/2=5 ce qui vas donner a=4
si on poursuit avec la deuxième équation, comme f(1)=5 on aura 3+a+b/2=5 ce qui vas donner a=4
-
- Messages : 6336
- Enregistré le : mer. 5 sept. 2007 12:10
Re: étude et représentation graphique d'une fonction
C'est très bien Jean.
Bonne continuation.
SoSMath.
Bonne continuation.
SoSMath.
Re: étude et représentation graphique d'une fonction
Merci beaucoup pour votre aide
-
- Messages : 6336
- Enregistré le : mer. 5 sept. 2007 12:10
Re: étude et représentation graphique d'une fonction
A bientôt Jean.
SoSMath.
SoSMath.