cercle triginimetrique

Retrouver tous les sujets résolus.
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:15

Bonjour,
le point M n'est plus sur le cercle trigonométrique donc il n'y a plus d'enroulement, il se "déroule" le long de l'intervalle [-6pi;6pi] donc c'est normal qu'il ne repasse par le même point : il ne repasse jamais à la même abscisse.
La fonction ainsi tracé est bien une sinusoïde et elle correspond à la fonction sinus.
On voit la périodicité de la fonction : c'est le même motif qui se reproduit tous les 2pi.
Bonne rédaction
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:18

Merci de votre aide, il me reste encore ces questions que je n'ai pas compris pouvez vous m'aidez
Fichiers joints
Capture d’écran 2021-10-28 à 12.17.51.png
Capture d’écran 2021-10-28 à 12.17.40.png
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:28

Bonjour,
Pour la question 1, cela rejoint ce que j'ai déjà dit : ta courbe est "coincée" entre ces deux droites, ce qui traduit le fait que le sinus d'un réel est toujours compris entre -1 et 1 : on l'a vu sur le cercle, le point N se déplaçait dans l'intervalle [-1;1].
Pour la question 2, tu dois voir que ton point Q parcourt la même portion de courbe que le point M.
Les coordonnées de Q sont les opposées de celles de M et Q reste sur la courbe, cela signifie que la courbe est symétrique par rapport à l'origine, ce qu'on traduit par le fait que la fonction sinus est impaire.
Ce sont des mots que tu as peut-être déjà vu en seconde.
Pour la translation, cela illustre ce que je t'ai déjà dit : la courbe est invariante par translation de vecteur 2pivecteur(OI).
Bonne fin d'étude.
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:31

erci mais je n'arrive pas à mettre un point Q sur geogebra pouvez vous me dire ce qu'il faut écrire dans geogebra pour avoir le point Q symétrique
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:33

Bonjour,
dans la zone de saisie, tu peux écrire directement :

Code : Tout sélectionner

Saisie : Q=Symétrie(M, O)
Bonne continuation
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:37

Pour la question 2 a), ça veut dire que Q varie sur l'ensemble (-1 ,1) ou pas
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:40

Bonjour,
Q est un point, il ne peut pas varier dans un intervalle.
J'ai déjà répondu à cette question dans mon avant-dernier message :
sos-math(21) a écrit :
jeu. 28 oct. 2021 11:28
Pour la question 2, tu dois voir que ton point Q parcourt la même portion de courbe que le point M.
Essaie de réfléchir par toi-même car j'ai l'impression de tout faire....
Bonne continuation
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:47

J'ai bien compris, que Q ne pouvait pas varier dans un intervalle, mais moi du coup je répond quoi a la question 2 a car on me demande un ensemble
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:49

et pour la question 2 b) , est ce que les coordonnées du point Q sont (-a;sin(a)))
et la fonction est donc impaire
est ce correct?
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:50

Bonjour,
je te conseille de lire mon message, j'y ai déjà répondu : une courbe est un ensemble.
Ton point Q parcourt la courbe de la fonction sinus sur [-6pi;6pi].
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:52

ah ok merci
our la question 3 a je n'arrive pas a créer le vecteur pouvez vous m'aidez
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:52

Bonjour,
là encore, j'y ai déjà répondu, si tu relis mes message, j'ai dit que les coordonnées de Q sont les opposées de celles de M.
Il y a donc une erreur dans ta proposition : si M(a,sin(a)), alors les coordonnées de Q sont opposées à celles de M soit Q(...;...).
La fonction est effectivement impaire (là encore, déjà dit).
Léa

Re: cercle triginimetrique

Message par Léa » jeu. 28 oct. 2021 11:53

donc Q =(-a;-sin(a))?
léa

Re: cercle triginimetrique

Message par léa » jeu. 28 oct. 2021 11:55

je n'arrive pa non plus a créer le point R image de M pouvez vous aussi m'aidez ( je ne sais pas utiliser geogebra)
sos-math(21)
Messages : 9208
Enregistré le : lun. 30 août 2010 11:15

Re: cercle triginimetrique

Message par sos-math(21) » jeu. 28 oct. 2021 11:57

Bonjour,
tu crées un point T(2pi,0) (la lettre pi s'obtient en faisant alt+p)

Code : Tout sélectionner

Saisie : T=(2 π ,0)
Puis le vecteur vec(OT)

Code : Tout sélectionner

Saisie : v=Vecteur(O,T)
Répondre