Les volumes

Retrouver tous les sujets résolus.
Répondre
Karine

Les volumes

Message par Karine » mer. 6 mai 2020 11:00

Bonjour,
Je rencontre des difficultés pour répondre aux questions de mon exercice, j'aurais voulu savoir si vous pouviez m'aider ou du moins m'éclairer sur la démarche à suivre.

Respectueusement

Voici l'énoncé de mon exercice:
On considère trois solides de même hauteur: - une boule de rayon r; -une cylindre dont le disque de base a pour rayon r et - un cône dont le disque de base a pour rayon r.

1. Sachant que ces trois solides ont la même hauteur, exprimer en fonction de r la hauteur du cylindre et du cône.
2. Exprimer en fonction de r: a. le volume de la boule; b. le volume du cylindre et c. le volume du cône
sos-math(21)
Messages : 8783
Enregistré le : lun. 30 août 2010 11:15

Re: Les volumes

Message par sos-math(21) » mer. 6 mai 2020 12:03

Bonjour,
la hauteur de ta boule correspond à son diamètre donc elle vaut \(2r\).
Comme les solides ont la même hauteur, cette hauteur commune est \(2r\).
Ensuite il te reste à exprimer le volume de la boule, du cylindre, et du cône en fonction de \(r\) en sachant que :
  • Volume de la boule \(\mathcal{V}_{\text{boule}}=\dfrac{4}{3}\pi r^3\)
  • Volume du cylindre \(\mathcal{V}_{\text{cylindre}}=\text{(aire de la base)}\times \text{hauteur}=\pi r^2\times h\) où \(h=2r\)
  • Volume du cône \(\mathcal{V}_{\text{cône}}=\dfrac{1}{3}\text{(aire de la base)}\times \text{hauteur}=\dfrac{1}{3}\pi r^2\times h \) où \(h=2r\)
Je te laisse arranger les expressions.
Bonne conclusion
Répondre