exercice 89 p40 phare collection math 4eme

Retrouver tous les sujets résolus.
Répondre
jean daniel

exercice 89 p40 phare collection math 4eme

Message par jean daniel » dim. 13 nov. 2011 11:22

Bonjour mon fils et en 4eme dans un village a cotés de toulouse.Ce matin je l'aide a faire ses exercices de math et la bug je ne comprend pas
l'ennonce.
je vous le donne si quelqu'n peut nous aider je prend

Calculer le produit de tous les nombres entiers superieurs ou egaux a -234 et inferieur ou egaux a 461.Justifier votre reponse.

merci d'avance
SoS-Math(24)
Messages : 75
Enregistré le : lun. 5 sept. 2011 08:02

Re: exercice 89 p40 phare collection math 4eme

Message par SoS-Math(24) » dim. 13 nov. 2011 12:35

Bonjour,
Un produit est le résultat d'une multiplication. Il s'agit donc de calculer le produit suivant :
(-234)x(-233)x(-232)x......x(-2)x(-1)x0x1x2x3x......x459x460x461
Ne remarquez-vous pas quelque chose ?
Bonne recherche
Sos-math
dany

Re: exercice 89 p40 phare collection math 4eme

Message par dany » dim. 13 nov. 2011 18:17

je suis d'accord mais cela reste le produit de nombre entier je ne comprend toujours pas le justifier votre reponse il reste quand beaucoup de solution et je ne maitrise vraiment pas le chemin
merci d'avance
SoS-Math(1)
Messages : 3151
Enregistré le : mer. 5 sept. 2007 10:48

Re: exercice 89 p40 phare collection math 4eme

Message par SoS-Math(1) » dim. 13 nov. 2011 18:59

Bonjour Dany,

Je ne sais pas comment vous aider sans vous donner la solution.

Connaissez-vous la table de multiplication de zéro?

A bientôt.
spencia

Re: exercice 89 p40 phare collection math 4eme

Message par spencia » jeu. 28 nov. 2013 17:51

SoS-Math(1) a écrit :Bonjour Dany,

Je ne sais pas comment vous aider sans vous donner la solution.

Connaissez-vous la table de multiplication de zéro?

A bientôt.
mes comment justifier si on fait -233+233=0
sos-math(20)
Messages : 2461
Enregistré le : lun. 5 juil. 2010 13:47

Re: exercice 89 p40 phare collection math 4eme

Message par sos-math(20) » jeu. 28 nov. 2013 18:34

Bonsoir,

Merci de ne pas vous immiscer dans un message existant et de créer votre propre message.

A bientôt sur SOS-math
corine.poelaert

devoir maison : maison avec acces pour personnes a mobilite

Message par corine.poelaert » mar. 21 avr. 2015 17:22

monsieur dumortier envisage de faire construire une maison.Pour des raisons sanitaires,sa porte d'entree se trouvera à 0,5 m du sol.Ce monsieur souhaiterait que cette maison soit accessible aux personnes à mobilité reduite . Pour cela , il doit respecter un certain nombre de conditions imposés par la loi
question monsieur dimortier voudrai installer avec une hauteur de marche maximum , et le giron minimum autorisé . Il veut que toutes les marches aient la meme hauteur pour un escalier moins dangereux. Monsieur dumortier veut aussi faire une rampe d'acces avec une pente de 5%
a) quelle sera la longueur au sol de sa rampe d'acces? doit il prevoir un palier supplementaire de repos dans sa rampe ? pourquoi ?
b) quelles seront les dimensions de sa rampe d'accés ?
c) quelles seront les dimensions de l'escalier ? on pourra faire un croquis de l'escalier
d) calculer la quantité de béton que devra couler monsieur dumortier pour réaliser son escalier et sa rampe.
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: exercice 89 p40 phare collection math 4eme

Message par sos-math(21) » mer. 22 avr. 2015 13:23

Bonjour,
pour la rampe, il faut faire le lien entre pente et angle géométrique, la figure ci-dessous devrait t'aider :
Figuresos_1.jpg
Bon courage
marie

Re: exercice 89 p40 phare collection math 4eme

Message par marie » dim. 1 nov. 2015 16:50

je ne comprend pas qui peut explequie mieux ou donne la reponce pour que j aide mon fils ex 89page 40
SoS-Math(31)
Messages : 1360
Enregistré le : lun. 12 oct. 2015 10:33

Re: exercice 89 p40 phare collection math 4eme

Message par SoS-Math(31) » dim. 1 nov. 2015 17:24

Bonjour Madame,
La pente est donnée par le rapport des longueurs AC sur AB : \(\frac{AC}{AB}\)
L'énoncé dit que cette pente est de 5% = \([tex]\)exemple : \(\frac{AC}{AB}\)
Donc
\(\frac{AC}{AB}\) = \(\frac{AC}{AB}\) =0,05.
Sachant que AC= 0,5 m, il suffit de résoudre l'équation pour trouver AB.
Ensuite en utilisant Pythagore, vous en déduisez la longueur BC de la rampe d'accès.
Répondre