parallélisme

Retrouver tous les sujets résolus.
Répondre
eleve86
Messages : 379
Enregistré le : mar. 3 janv. 2012 09:14

parallélisme

Message par eleve86 » sam. 2 févr. 2013 14:08

bonjour,

je suis en train de faire l'exercice 11 page 173 édition Nathan

Comment peut-on montrer que deux plans sont parallèles ?

Merci d'avance
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: parallélisme

Message par sos-math(21) » dim. 3 févr. 2013 18:18

Bonsoir,
Je n'ai pas ce manuel et je ne vois donc pas l'énoncé de cet exercice.
D'une manière générale, on peut montrer que deux plans sont parallèles si leur vecteurs normaux sont perpendiculaires :
Soit deux plans P et Q d'équations respectives (dans un repère de l'espace) :
a x + b y + cz + d = 0 et a' x + b' y + c'z + d' = 0
Les plans P et Q sont parallèles si, et seulement si les triplets ( a, b, c) et (a', b', c)' sont proportionnels.
Sinon, dans un cas purement géométrique, il suffit de montrer que deux droites sécantes du premier plan sont respectivement parallèles à deux droites sécantes du deuxième plan.
Es-tu dans une configuration comme celle-ci (avec des coordonnées) ou as-tu seulement une situation géométrique ?
Précise moi ton énoncé si tu veux que je t'apporte des précisions.
Bon courage,
A bientôt sur sos-math
Répondre