Page 1 sur 1
Etude de fonction
Posté : sam. 19 nov. 2011 20:10
par sophie
Bonjour,
On a f(x)=10x/(e(x)+1)
Comment montrer que f(a)=10(a-1)?
Merci
Re: Etude de fonction
Posté : sam. 19 nov. 2011 20:16
par SoS-Math(4)
Bonsoir,
Tu peux pas le montrer car ce n'est pas vrai.
sosmaths
Re: Etude de fonction
Posté : sam. 19 nov. 2011 20:21
par sophie
Effectivement, je dois vous donner l'énoncé entier.
On a f(x)=10x/(e(x)+1)
On a montré que f'(x)= 10/(e(x)+1)² * g(x)
g(x)=e(x)+1-xe(x)
J'ai établi le tableau de variations de g et j'ai montré qu'il existe un unique a tel que g(a)=0
J'en ai déduit le tableau de variations de f
Et maintenant je dois démontrer que f(a)=10(a-1)
je ne sais pas s'il manque des données...
Merci
Re: Etude de fonction
Posté : sam. 19 nov. 2011 20:35
par sophie
J'ai fait un petit truc, j'ai résolu f(x)=10(x-1) et j'en suis arrivé a x=a donc f(a)=10(a-1), est-ce juste ?
Re: Etude de fonction
Posté : sam. 19 nov. 2011 20:50
par SoS-Math(9)
Bonsoir Sophie,
Je pense qu'il manque des données ...
SoSMath.
Re: Etude de fonction
Posté : sam. 19 nov. 2011 21:05
par sophie
Soit f(x)=10x/(e(x)+1)
Démontrer que f'(x)= 10/(e(x)+1)² * g(x)
Démontrez qu'il existe un unique a tel que g(a)=0. Encadrez a a 10^-1 près
Déduisez en le tableau de variations de f et démontrez que f(a)=10(a-1)
Voilà ce que j'ai fait : j'ai résolu f(x)=10(x-1) et j'ai bien trouvé x=a ce qui veut bien dire que f(a)=10(a-1)
Re: Etude de fonction
Posté : sam. 19 nov. 2011 21:13
par SoS-Math(9)
Sophie,
Avec tes données tes résultats semblent justes.
SoSMath.