Fonction Logarithme népérien.
Posté : mar. 25 janv. 2011 00:24
Bonjour à tous, j'ai un exercice de math qui me pose vraiment problème, j'aurais besoin de votre aide!
Voici l'énoncé:
Soit f la fonction définie sur l'intervalle ]1;+infi[ par f(x) = lnx - 1/lnx.
On nomme (C) la courbe représentative de f et T la courbe d'équation y = lnx dans un repère orthogonal (O;i;j).
1) Etudier les variations de la fonction f et préciser les limites en 1 et en +infi.
2)a) Déterminer la limite de [f(x) - lnx] en +infi. Interpréter graphiquement cette limite.
b) Préciser les positions relatives de (C) et de T.
3) On se propose de chercher les tangentes à la courbe (C) passant par le point O.
a) Soit a un réel appartenant à l'intervalle ]1;+infi[.
Démontrer que la tangente Ta ) (C) au point d'abscisse a passe par l'origine du repère si et seulement si f(a) - af'(a) = 0.
Soit g la fonction définie sur l'intervalle ]1;+infi[ par g(x) = f(x) - xf'(x).
b) Montrer que sur ]1;+infi[, les équations g(x) = 0 et (lnx)^3 - (lnx)² - lnx - 1 = 0 ont les mêmes solutions.
c) Après avoir étudié les variations de la fonction u définie par R par u(t) = t^3 - t² - t - 1, montrer que la fonction u s'annule une fois et une seule sur R.
d) En déduire l'existence d'une tangente unique à la courbe (C) passant par le point O.
La courbe (C) et la courbe T sont donnnées grace à la calculatrice.
Tracer cette tangente le plus précisément possible.
4) On considère une réel m et l'équation f(x)=mx d'inconnue x.
Par lecture grahique et sans justification, donner, suivant les valeurs du réel m, le nombre de solutions de cette équation appartenant à l'intervalle ]1;10].
Alors, pour ce qui est de mon travail :
1) On calcul la dérivé de f(x). Soit f'(x) = 1/x - 1/(1/X) = 1/x - x/1 = -x²/x = -x.
x étant négatif, on sait que la fonction est négative à l'extérieur des racines et positive à l'intérieur des racines.
Pour les limites: en 1 = -1 et en +infi = -infi.
2)a)lim de [f(x) - lnx] en +infi donne : lnx - 1/lnx - lnx = 1/lnx = 1/+infi = 0. C'est une asymptote horizontale.
Et puis à partir de là, je bloque complètement. Je comprend les questions, mais le problème est la résolution et surtout la méthode.
J'espère que vous pourrez m'aider.
A bientot, et merci d'avance. Kikou!
Voici l'énoncé:
Soit f la fonction définie sur l'intervalle ]1;+infi[ par f(x) = lnx - 1/lnx.
On nomme (C) la courbe représentative de f et T la courbe d'équation y = lnx dans un repère orthogonal (O;i;j).
1) Etudier les variations de la fonction f et préciser les limites en 1 et en +infi.
2)a) Déterminer la limite de [f(x) - lnx] en +infi. Interpréter graphiquement cette limite.
b) Préciser les positions relatives de (C) et de T.
3) On se propose de chercher les tangentes à la courbe (C) passant par le point O.
a) Soit a un réel appartenant à l'intervalle ]1;+infi[.
Démontrer que la tangente Ta ) (C) au point d'abscisse a passe par l'origine du repère si et seulement si f(a) - af'(a) = 0.
Soit g la fonction définie sur l'intervalle ]1;+infi[ par g(x) = f(x) - xf'(x).
b) Montrer que sur ]1;+infi[, les équations g(x) = 0 et (lnx)^3 - (lnx)² - lnx - 1 = 0 ont les mêmes solutions.
c) Après avoir étudié les variations de la fonction u définie par R par u(t) = t^3 - t² - t - 1, montrer que la fonction u s'annule une fois et une seule sur R.
d) En déduire l'existence d'une tangente unique à la courbe (C) passant par le point O.
La courbe (C) et la courbe T sont donnnées grace à la calculatrice.
Tracer cette tangente le plus précisément possible.
4) On considère une réel m et l'équation f(x)=mx d'inconnue x.
Par lecture grahique et sans justification, donner, suivant les valeurs du réel m, le nombre de solutions de cette équation appartenant à l'intervalle ]1;10].
Alors, pour ce qui est de mon travail :
1) On calcul la dérivé de f(x). Soit f'(x) = 1/x - 1/(1/X) = 1/x - x/1 = -x²/x = -x.
x étant négatif, on sait que la fonction est négative à l'extérieur des racines et positive à l'intérieur des racines.
Pour les limites: en 1 = -1 et en +infi = -infi.
2)a)lim de [f(x) - lnx] en +infi donne : lnx - 1/lnx - lnx = 1/lnx = 1/+infi = 0. C'est une asymptote horizontale.
Et puis à partir de là, je bloque complètement. Je comprend les questions, mais le problème est la résolution et surtout la méthode.
J'espère que vous pourrez m'aider.
A bientot, et merci d'avance. Kikou!