Lieu Géométrique
Posté : lun. 4 oct. 2010 11:01
J'ai un DM à rendre pour demain, et j'ai commencé l'exercice, sauf que, cet exercice étant déjà traité sur le forum, je suis allé voir la correction, et la première question nécessite le calcul de la dérivée de f(x), or c'est là que j'ai un souci. Tout d'abord l'énoncé :
Soit f la fonction définie, pour tout réel x ≠ 1, par :
f(x) = x^3 / (x-1)²
Et C sa courbe représentative dans le plan muni d’un repère orthogonal (O, i, j).
1°) Etudier les variations de la fonction f
2°) Déterminer des réels a, b, c et d tels que, pour tous réel x ≠ 1 :
f(x) = ax + b + [ (cx + d) / (x – 1)² ]
En déduire la position de la courbe C par rapport à la droite D d’équation y = x + 2.
3°) Déterminer l’abscisse du point J de la courbe C en lequel la tangente est parallèle à la droite D, puis une équation de cette tangente T.
4°) Tracer la courbe C et les droites D et T.
5°) a) A l’aide graphique, étudier, suivant les valeurs du paramètre p, le nombre de solution de l’équation : f(x) = x + p.
b) Préciser l’ensemble D des valeurs de p pour lesquelles cette équation admet deux solutions distinctes.
6°) Lorsque la droite Δ d’équation y = x + p coupe la courbe C en deux points M et N, on note P le milieu le milieu de [MN].
On s’intéresse au lieu géométrique du point P.
a) Démontrer que les abscisses des points d’intersection M et N sont les solutions de l’équation (E) (p-2)x² + (1-2p)x + p = 0.
b) En déduire que l’abscisse du point P est :
xP = 1 + [ 3 / (2p – 4) ]
et démontrer que P appartient à la courbe C d’équation :
y = x + 2 + [ 3 / 2(x – 1) ]
c) Quel est l’ensemble décrit par xP lorsque p décrit D ?
d) Etudier les variations de la fonction g définie, pour tout réel x ≠ 1, par :
g(x) = x + 2 + [ 3 / 2(x – 1) ]
et tracer la courbe C’.
Préciser la partie de la courbe C’ décrite par le point P lorsque la droite Δ prend toutes les positions possibles.
Donc pour la question 1) J'ai f'(x) = (-3x²) / [ (x-1)^4 ] et non pas f'(x) = [ x² (x² - 4x + 3) ] / [ (x-1)^4 ] comme Emeline nous le dit ici : http://sgbd.ac-poitiers.fr/sosmath/view ... f=9&t=4554 .
Si vous pouviez m'expliquer ce serait gentil, merci !
Soit f la fonction définie, pour tout réel x ≠ 1, par :
f(x) = x^3 / (x-1)²
Et C sa courbe représentative dans le plan muni d’un repère orthogonal (O, i, j).
1°) Etudier les variations de la fonction f
2°) Déterminer des réels a, b, c et d tels que, pour tous réel x ≠ 1 :
f(x) = ax + b + [ (cx + d) / (x – 1)² ]
En déduire la position de la courbe C par rapport à la droite D d’équation y = x + 2.
3°) Déterminer l’abscisse du point J de la courbe C en lequel la tangente est parallèle à la droite D, puis une équation de cette tangente T.
4°) Tracer la courbe C et les droites D et T.
5°) a) A l’aide graphique, étudier, suivant les valeurs du paramètre p, le nombre de solution de l’équation : f(x) = x + p.
b) Préciser l’ensemble D des valeurs de p pour lesquelles cette équation admet deux solutions distinctes.
6°) Lorsque la droite Δ d’équation y = x + p coupe la courbe C en deux points M et N, on note P le milieu le milieu de [MN].
On s’intéresse au lieu géométrique du point P.
a) Démontrer que les abscisses des points d’intersection M et N sont les solutions de l’équation (E) (p-2)x² + (1-2p)x + p = 0.
b) En déduire que l’abscisse du point P est :
xP = 1 + [ 3 / (2p – 4) ]
et démontrer que P appartient à la courbe C d’équation :
y = x + 2 + [ 3 / 2(x – 1) ]
c) Quel est l’ensemble décrit par xP lorsque p décrit D ?
d) Etudier les variations de la fonction g définie, pour tout réel x ≠ 1, par :
g(x) = x + 2 + [ 3 / 2(x – 1) ]
et tracer la courbe C’.
Préciser la partie de la courbe C’ décrite par le point P lorsque la droite Δ prend toutes les positions possibles.
Donc pour la question 1) J'ai f'(x) = (-3x²) / [ (x-1)^4 ] et non pas f'(x) = [ x² (x² - 4x + 3) ] / [ (x-1)^4 ] comme Emeline nous le dit ici : http://sgbd.ac-poitiers.fr/sosmath/view ... f=9&t=4554 .
Si vous pouviez m'expliquer ce serait gentil, merci !