Page 1 sur 1

Nombres complexes

Posté : dim. 22 nov. 2009 17:29
par Tiphaine
Bonjour, j'ai un peu de mal avec mon exercice de maths je coince pour les questions suivantes j'aimerais avoir un peu d'aide. Voila le sujet:

Dans le plan complexe muni d'un repère orthonormal (O ; vect(OU) ; vect(OV)), on considère les points Mn d'affixes zn=(1+i√3)(-i/2)^n où n est un entier naturel.

4) Déterminer la distance OMn en fonction de n.

5)a) Montrer que l'on a MnMn+1=√5/(2^n) pour tout entier de naturel n.

b) On pose Ln= ∑(de k=0 à n) MkMk+1.
Déterminer Ln en fonction de l'entier n.
Calculer lim (n->+∞) Ln

Merci d'avance

Re: Nombres complexes

Posté : lun. 23 nov. 2009 18:56
par SoS-Math(11)
Bonsoir Tiphaine,

Pense que OM = |z| et que |zz'|=|z||z'|

\(\|OM_n|\)=\(\sqrt(1+3)\times{(\frac{1}{2} ^n\)= ...

Pour la suite MnMn+1 = |zn+1 - zn| ; calcule zn+1 -zn, mets \(\frac{i}{2}^n\) en facteur puis conclus

Ensuite tu as la somme des termes d'une suite géométrique de raison \(\frac{1}{2}\)

Bonne continuation