Page 1 sur 1
dérivation maths complémentaires
Posté : lun. 1 févr. 2021 22:06
par marie
bonsoir, je dois faire ces exercices mais je ne sais pas comment faire dériver les fonctions, une personne pourrait-elle me mettre sur la bonne voie?
Je vous remercie
Re: dérivation maths complémentaires
Posté : lun. 1 févr. 2021 22:14
par sos-math(21)
Bonjour,
ta première dérivée est de la forme \(\dfrac{u}{v}\) avec \(u(x)=\text{e}^{x}\) et \(v(x)=x\).
On sait \(\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}\).
Je te laisse appliquer cette formule, tu dois trouver \(f'(x)=\dfrac{x\text{e}^x-\text{e}^x}{x^2}=\dfrac{\text{e}^x(x-1)}{x^2}\)
Tu pourras ensuite étudier le signe de cette dérivée, en déduire le sens de variation de \(f\), son tableau de variation, ce qui te donnera la réponse à la question des solutions pour \(f(x)=1\).
Bon calcul