Page 1 sur 1

Exercice

Posté : sam. 10 oct. 2020 17:39
par Inès
Bonsoir

https://www.cjoint.com/data/JJkqJ3GfF6f_exocourt.png

Pour la 1 :
je déterminerais un vecteur normal à D, donc à vecteur OM et à vecteur ON ?
ce vecteur serait n (a b c) et on aurait donc : ax+by+cz+d=0

Mais le pb c est que déterminer n c est la question 2 non ?

merci

Re: Exercice

Posté : sam. 10 oct. 2020 18:50
par SoS-Math(25)
Bonjour Inès,

Si tu as vu la définition et les propriétés du produit vectoriel en maths,tu peux l'utiliser.

Sinon, il faut trouver un vecteur \(\vec{n}(x, y , z)\) dont le produit scalaire avec \(\vec{OM}\) et \(\vec{ON}\) soit nul.

Cela donne un système de 2 équations à trois inconnues en utilisant le produit scalaire sur les coordonnées de vecteurs.

Bon courage

Re: Exercice

Posté : sam. 10 oct. 2020 19:13
par Invité
Comment on pourrait utiliser le produit vectoriel ici ?

Car oui je l'ai vu.

Re: Exercice

Posté : sam. 10 oct. 2020 19:51
par sos-math(21)
Bonjour,
le produit vectoriel de deux vecteurs est un vecteur normal à ces deux vecteurs.
Donc \(\overrightarrow{OM}\wedge\overrightarrow{ON}\) sera un vecteur normal à D.
Bonne continuation

Re: Exercice

Posté : sam. 10 oct. 2020 19:55
par Invité
Ah oui OK !

donc pour la 1 il y a 2 méthodes possibles ?
quelle est la méthode a privilégioer ,=?

Re: Exercice

Posté : sam. 10 oct. 2020 19:58
par sos-math(21)
Je ne pense pas qu'il y ait une bonne méthode et des mauvaises méthodes.
L'important est que tu maitrises une technique et que tu sois capable de la reproduire en évaluation
Dans ce cas présent, je ne sais pas laquelle serait la plus adaptée, il faudrait voir la longueur et la difficulté des calculs.
Bonne continuation

Re: Exercice

Posté : sam. 10 oct. 2020 20:02
par Invité
ok merci bcp

Qu'est ce que je progresse grace à vous ! Les profs de lycée me manque, depuis que j'ai quitter le lycée, je n'ai plus de prof réellement investis pour ces élèves, là ils font le strict minimum. en plus je suis pas dans une école d'ingé qui me convient... :(

Pour la question 3 avez vous une idée ? Je déteste les sphères....

Re: Exercice

Posté : sam. 10 oct. 2020 20:28
par sos-math(21)
Si ta sphère est tangente au plan D en O, alors son centre appartient à la perpendiculaire au plan D passant par O.
Avec le vecteur normal, il est possible de paramétrer cette droite et de cherche le point de celle-ci qui sera situé à 2 unités du point O (car la sphère à a pour rayon 2.
Une fois que tu auras les coordonnées du centre, il te restera à écrire l'équation de la sphère, ce qui n'est pas trop difficile.
Bon courage et pense à te reposer.

Re: Exercice

Posté : sam. 10 oct. 2020 20:53
par Invité
OK donc la première étape pour la question 3 c'est bien de trouver les coordonnées du centre ?

Re: Exercice

Posté : sam. 10 oct. 2020 22:22
par SoS-Math(25)
Trouver le centre est tout le problème puisque tu as le rayon de la sphère S.

Notons C(x;y;z) son centre

Il faut traduire les données autrement :

Le plan D est tangent à S donc C est sur une droite dirigée par n et passant par le point d'intersection de D et de S.

O est aussi sur S et le plan D, c'est donc le point d'intersection entre S et D.

Ainsi, C est sur la droite dirigée par n passant par O => conditions sur les coordonnées de C
Et à une distance 2 de O => une équation

Je te laisse faire les calculs.

Bon courage

Re: Exercice

Posté : dim. 11 oct. 2020 02:41
par Invité
merci beaucoup j'ai compris grâce à sos maths... une fois encore

Re: Exercice

Posté : dim. 11 oct. 2020 03:22
par Invité
ok je vais mettre tout ça en équation.

Pour la 1 :

doit-on bien avoir : n.OM=0 et n.ON=0 ?

Comment trouver les coordonnées de n à partir de ça ?

Re: Exercice

Posté : dim. 11 oct. 2020 10:52
par sos-math(21)
Bonjour,
tu vas trouver des relations entre les coordonnées de "ton" vecteur normal.
Tu n'auras pas des coordonnées unique car il n'y a pas un vecteur normal, il y en a une infinité qui sont colinéaires entre eux et dont les coordonnées sont proportionnelles.
Traduis tes deux produits scalaires nuls et tu auras ces relations.
Bonne continuation

Re: Exercice

Posté : mar. 13 oct. 2020 01:19
par Invité
SoS-Math(25) a écrit :
sam. 10 oct. 2020 22:22
Trouver le centre est tout le problème puisque tu as le rayon de la sphère S.

Notons C(x;y;z) son centre

Il faut traduire les données autrement :

Le plan D est tangent à S donc C est sur une droite dirigée par n et passant par le point d'intersection de D et de S.

O est aussi sur S et le plan D, c'est donc le point d'intersection entre S et D.

Ainsi, C est sur la droite dirigée par n passant par O => conditions sur les coordonnées de C
Et à une distance 2 de O => une équation

Je te laisse faire les calculs.

Bon courage
Je suis désolée, je pensais avoir réussi cette question, mais en fait non...

Comment trouver les conditions sur les coordonnées de C et l'équation dont parlent SoS 25 ?
Par contre j'ai trouvé les coordonnées du vecteur n : (1;6;5).

Pourriez vous me montrer comment terminer cette question 3 svp ?
Car l'examen arrive très très vite (mercredi matin).

MERCI. Je suis épuisée....

Re: Exercice

Posté : mar. 13 oct. 2020 17:03
par sos-math(21)
Bonjour,
ce que tu peux faire dans un premier temps est de normaliser ton vecteur afin qu'il soit unitaire : tu calcules sa norme et tu divise chaque composante par cette norme, tu obtiens alors un vecteur unitaire \(\overrightarrow{u}\) qui dirige la droite perpendiculaire.
Sur cette droite, ton centre \(C\) se situe à 2 unités du point \(O\) car ta sphère est de rayon 2.
Donc tu auras \(C=O+2\overrightarrow{u}\) ou \(C=O-2\overrightarrow{u}\) (2 possibilités).
Je te laisse terminer le calcul.
Bonne continuation