complexes !!
Posté : ven. 22 mai 2009 12:08
bonjour chui bloqué pour cet exercice :
on donne P(z)=z^3-(5+6i)z²-2(2-7i)z+8-8i
1)calculer P(1)
2) achever la résolution dans de l'équation p(z)=0
3) on donne a(z1=1) , b(z2=2i) et c=(z3=4+4i)
a) calculer (z3-z2)/(z1-z2) , en déduire que le triangle ABC est rectangle en B et que BC=2BA.
b)déterminer z4 l'affixe du point D pour que ABCD soit rectangle
c) vérifier que Z3=(1-2i)z2+2i
4)m appartient à C et (Em):z²-2[(1-i)m+i]z+(1-2i)m²+2im=0
a) résoudre dans C l'équation (Em)
b)M'(z'=m) M"(z"=(1-2i)m+2i) montrer que si m différent de 1 alors (z"-z')/(1-z')=2i
en déduire une construction du point M" connaissant M'.
j'ai répondu sur la 1) 2) et 3) , mais la 4) aucune idée !!!!!!
on donne P(z)=z^3-(5+6i)z²-2(2-7i)z+8-8i
1)calculer P(1)
2) achever la résolution dans de l'équation p(z)=0
3) on donne a(z1=1) , b(z2=2i) et c=(z3=4+4i)
a) calculer (z3-z2)/(z1-z2) , en déduire que le triangle ABC est rectangle en B et que BC=2BA.
b)déterminer z4 l'affixe du point D pour que ABCD soit rectangle
c) vérifier que Z3=(1-2i)z2+2i
4)m appartient à C et (Em):z²-2[(1-i)m+i]z+(1-2i)m²+2im=0
a) résoudre dans C l'équation (Em)
b)M'(z'=m) M"(z"=(1-2i)m+2i) montrer que si m différent de 1 alors (z"-z')/(1-z')=2i
en déduire une construction du point M" connaissant M'.
j'ai répondu sur la 1) 2) et 3) , mais la 4) aucune idée !!!!!!