suite par récurrence
Posté : dim. 20 sept. 2020 11:24
Bonjour Monsieur, Madame
J'ai un exemple à résoudre pour mon cours sur les suites par récurrence. Dans l'exemple j'ai reuissi que l'étape 1 et je n'arrive à resoudre l'étape 2 je voudrais bien que quelqu'un m'aide à résoudre. Merci Beaucoup
Voici l'exemple :
On considère la suite (un)n≥1 définie par u1= 10 et, pour tout n ∈ N*,
un+1= (n(un)/n + 2) + 9
On considère la suite (wn) définie pour tout n ∈ N*, par wn = un− 3n − 6.
Montrer par récurrence que, pour tout n ∈ N*, wn>0
etape 1:
n=1 w1=u1− 3x1 − 6= 10 − 9 = 1
w1>0 donc la propriété est vraie pour n=1.
etape 2 supposons qu'il existe un entier k tel que la propriété soit vraie c'est à dire,
wk > 0
montrons que la propiété est vrai au rang k+1 soit Wk+1 > 0
wk > 0
un− 3n − 6 > 0
un+1 -3(n+1)-6 > 0
(n(un)/n + 2) + 9-3n-3-6 > 0
(n(un)/n + 2) -3n > 0
(n(un)/n + 2) > 3n > 0
je sais pas comment faire après quelqu'un pourrait m'aider
J'ai un exemple à résoudre pour mon cours sur les suites par récurrence. Dans l'exemple j'ai reuissi que l'étape 1 et je n'arrive à resoudre l'étape 2 je voudrais bien que quelqu'un m'aide à résoudre. Merci Beaucoup
Voici l'exemple :
On considère la suite (un)n≥1 définie par u1= 10 et, pour tout n ∈ N*,
un+1= (n(un)/n + 2) + 9
On considère la suite (wn) définie pour tout n ∈ N*, par wn = un− 3n − 6.
Montrer par récurrence que, pour tout n ∈ N*, wn>0
etape 1:
n=1 w1=u1− 3x1 − 6= 10 − 9 = 1
w1>0 donc la propriété est vraie pour n=1.
etape 2 supposons qu'il existe un entier k tel que la propriété soit vraie c'est à dire,
wk > 0
montrons que la propiété est vrai au rang k+1 soit Wk+1 > 0
wk > 0
un− 3n − 6 > 0
un+1 -3(n+1)-6 > 0
(n(un)/n + 2) + 9-3n-3-6 > 0
(n(un)/n + 2) -3n > 0
(n(un)/n + 2) > 3n > 0
je sais pas comment faire après quelqu'un pourrait m'aider