ex Probabilités conditionnelles

Retrouver tous les sujets résolus.
Yessine

ex Probabilités conditionnelles

Message par Yessine » ven. 12 juin 2020 20:55

Bonjour,
Ex:
Ex.png
dans la correction de question 2)b) pourquoi pas il n'a pas faire comme ça p(v) = p((A inter B )barre) = 1- p(A inter B ) = 1 - 0.5 = 0.5
screenshot_20200612_204327.png
pouvez vous m'aider?
Merci d'avance
sos-math(21)
Messages : 7931
Enregistré le : lun. 30 août 2010 11:15

Re: ex Probabilités conditionnelles

Message par sos-math(21) » sam. 13 juin 2020 08:31

Bonjour,
l'événement \(V=\overline{A\cap B}\) est l'événement contraire de \(A\cap B\) qui est "les deux salles sont occupées".
Or la négation de la phrase "Les deux salles sont occupées" signifie qu'au moins une des salles n'est pas occupée, c'est-à-dire libre. C'est donc qu'il n'y a pas les deux salles occupées, ce qui peut correspondre à A libre et B occupée ou bien A occupée et B libre ou bien A libre et B libre.
Tu vois bien qu'en particulier, cela ne correspond pas seulement à "les deux salles sont libres".
En termes ensemblistes, l'algèbre de Boole donne : \(\overline{A\cap B}=\overline{A}\cup \overline{B}\), ce qui n'est pas égal à ce que tu pensais \(\overline{A}\cap \overline{B}\) mais on a tout de même \((\overline{A}\cap \overline{B})\subset (\overline{A}\cup \overline{B})\).
Est-ce plus clair ?
Bonne continuation
Yessine

Re: ex Probabilités conditionnelles

Message par Yessine » dim. 14 juin 2020 08:53

Bonjour ,
merci c'est plus clair
j'ai une autre question :
je ne comprends pas la difference entre \(p(A\cap B)\) et \(p(A\cup B)\) dans l'exercice
pouvez vous m'aider?
Merci d'avance
SoS-Math(33)
Messages : 2380
Enregistré le : ven. 25 nov. 2016 14:24

Re: ex Probabilités conditionnelles

Message par SoS-Math(33) » dim. 14 juin 2020 09:23

Bonjour Yessine,
\(p(A\cap B)\) est la probabilité que les deux salles soient occupées en même temps
tandis que \(p(A\cup B)\) est la probabilité que l'une ou l'autre soit occupée.
Yessine

Re: ex Probabilités conditionnelles

Message par Yessine » dim. 14 juin 2020 09:30

est-ce que la probabilité que les deux salles soient occupées en même temps inclus dans \(p(A\cup B)\) ?
SoS-Math(9)
Messages : 6064
Enregistré le : mer. 5 sept. 2007 12:10

Re: ex Probabilités conditionnelles

Message par SoS-Math(9) » dim. 14 juin 2020 10:03

Bonjour Yessine,

oui, la probabilité que les deux salles soient occupées en même temps inclus dans p(A∪B).
Rappelle-toi le schéma suivant :
Inter-Reunion.PNG
SoSMath.
sos-math(21)
Messages : 7931
Enregistré le : lun. 30 août 2010 11:15

Re: ex Probabilités conditionnelles

Message par sos-math(21) » dim. 14 juin 2020 10:07

Bonjour,
en faisant un schéma de type patate, tu vois facilement que
\(A\subset A\cup B\),
\(B\subset A\cup B\)
et aussi \(A\cap B\subset A\cup B\) (intersection : événement correspondant aux deux salles occupées en même temps)
mais attention ton expression
Yessine a écrit :
dim. 14 juin 2020 09:30
est-ce que la probabilité que les deux salles soient occupées en même temps inclus dans \(p(A\cup B)\) ?
n' a pas de sens, cela n'a du sens que pour des ensembles. Tu pourras juste dire que \(p(A\cap B)\leqslant p(A\cup B)\).
Bonne continuation