Intégration par partie #4

Retrouver tous les sujets résolus.
Répondre
Antony

Intégration par partie #4

Message par Antony » dim. 15 mars 2020 00:00

Bonsoir !
Alors pour l’intégrale arcsin (x) dx je n’arrive pas à la bonne réponse et je ne comprends pas pourquoi.
Voici ma démarche.
J’ai choisi u comme étant arcsin(x) et dv comme étant dx.
Le corrigé arrive à x arcsinx +racine carrée de x^2-1+C au lieu de x arcsin x - racine carré de x^2-1+C soit différent de ma réponse.
Merci de votre aide.
Fichiers joints
A1859E63-95D7-41CB-A707-A1F2117B3D93.jpeg
C9C321AB-D639-4683-9C84-0FB2714834F1.jpeg
B2AB67ED-0ED6-4B5C-AC85-96BA09038235.jpeg
sos-math(21)
Messages : 10334
Enregistré le : lun. 30 août 2010 11:15

Re: Intégration par partie #4

Message par sos-math(21) » lun. 16 mars 2020 11:16

Bonjour,
Pour faire une intégration par parties, il faut choisir \(u\) et \(v'\).
Ici, \(u(x)=arcsin(x)\) et \(v'(x)=1\). Ce qui donne \(\int_{}^{}arcsin(x)dx=[uv]-\int_{}^{}u'(x)v(x)dx=xarcsin(x)-\int_{}^{}\dfrac{x}{\sqrt{1-x^2}}dx\)
Or l'intégrale de droite contient justement la dérivée de \((\sqrt{u})'=\dfrac{1}{2}\dfrac{u'}{\sqrt{u}}\) où \(\sqrt{u(x)}=\sqrt{1-x^2}\) qui se dérive en \(\dfrac{-2x}{2\sqrt{1-x^2}}=\dfrac{-x}{\sqrt{1-x^2}}\) donc on a bien une primitive de \(x\mapsto arcsin(x)\) qui vaut \(F(x)=xarcsin(x)+\sqrt{1-x^2}\)
Bonne continuation
Répondre