Exo suites
Posté : mar. 12 nov. 2019 21:11
Bonjour je suis face à un exercice auquel je bute. Soit I l’intervalle [0 ; 1]. On considère la fonction f définie sur I par
\(f(x)= \frac{4x+1}{2x+3}\)
Je n'arrive pas à trouver la réponse aux questions après de nombreux essaies.
1) Etudier les variations de f sur I et en déduire que, pour tout x élément de I, f(x) appartient à I.
2) On considère la suite (un) définie par u0 = 0 et pour tout n de N, \(U_{n+1}=\frac{4U_{n}+1}{2U_{n}+3}\)
Montrer par récurrence que, pour tout n, un appartient à I.
3) graphique (je sais faire)
4) Établir la relation \(U_{n+1}- U_{n}=\frac{(1U_{n})(2U_{n}+1)}{2U_{n}+3}\)
En déduire le sens de variation de la suite (un).
5) Démontrer que la suite (un) est convergente.
6) La limite l de la suite (un) vérifie l = f(l) . Calculer l .
Voilà si quelqu'un pourrait m'aider c'est très importants nous allons bientôt commencer un nouveau chapitre.
Merci
François
\(f(x)= \frac{4x+1}{2x+3}\)
Je n'arrive pas à trouver la réponse aux questions après de nombreux essaies.
1) Etudier les variations de f sur I et en déduire que, pour tout x élément de I, f(x) appartient à I.
2) On considère la suite (un) définie par u0 = 0 et pour tout n de N, \(U_{n+1}=\frac{4U_{n}+1}{2U_{n}+3}\)
Montrer par récurrence que, pour tout n, un appartient à I.
3) graphique (je sais faire)
4) Établir la relation \(U_{n+1}- U_{n}=\frac{(1U_{n})(2U_{n}+1)}{2U_{n}+3}\)
En déduire le sens de variation de la suite (un).
5) Démontrer que la suite (un) est convergente.
6) La limite l de la suite (un) vérifie l = f(l) . Calculer l .
Voilà si quelqu'un pourrait m'aider c'est très importants nous allons bientôt commencer un nouveau chapitre.
Merci
François