Page 1 sur 1
Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 18:30
par Julie
Bonjour,
J'aurai besoin d'aide pour trouver les limites en + et - l'infini de cette fonction:
(racine carré de x puissance 2 + 2 - racine carré de x puissance 2 + x)
(\(\sqrt{nombre}\) x\(10^{exposant}\)+2-\(\sqrt{nombre}\)
x\(10^{exposant}\)+x)
Re: Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 18:53
par sos-math(20)
Bonsoir Julie,
Quelle est ton expression au juste ? Est-ce \(\sqrt{x^2 + 2}-\sqrt{x^2 + x}\) ?
SOSmath
Re: Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 19:49
par Julie
Oui c'est sa
Re: Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 20:03
par sos-math(20)
Voici une méthode assez générale pour ce genre d'expression.
Il s'agit d'une transformation d'écriture de l'expression :
\(\sqrt{A} - \sqrt{B}=\frac{(\sqrt{A}-\sqrt{B})(\sqrt{A}+\sqrt{B})}{\sqrt{A}+\sqrt{B}}\).
L'intérêt est de faire apparaître une identité remarquable au numérateur, de la développer et de la simplifier.
Essaie avec ton expression.
SOSmath
Re: Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 20:11
par Julie
La limite que je trouve pour mon expression est + l'infinie. Est le bon résultat?
Re: Les limites pour une fonctions composée
Posté : lun. 21 sept. 2015 20:45
par sos-math(20)
Non, ce n'est pas du tout le bon résultat.
Pour t'aider, regarde la courbe représentative de ta fonction de départ sur ta calculatrice.
Bonne fin de soirée
SOSmath