exponentielle
Posté : lun. 2 févr. 2009 18:52
Bonjour,
donc j'ai un problème avec un exercice
énoncé: soit f(x)= xe^x/(e^x-1)
1.Donner lim x->0 (e^x-1)/x et démontrer que f est continue en O
2.Démontrer que pour tout réel x, on a e^x "supérieur ou égalé à" x+1, et que l'égalité n'a lieu que pour x = 0
3.Donner le tableau des variations de f.
donc pour 1. j'ai trouvé que la limite était égale à e^0 = 1 mais je ne comprends pas pour la continuité
2. si vous pouviez me donner une piste car je ne vois pas par ou commencer
3. j'ai trouvé que f'(x)= e^x(e^x-1-x)/(e^x-1)² > 0 (car du signe de e^x-1-x) donc que f est strictement croissante sur ]-00;0[ et ]0;+00[
mais sur ma calculatrice je vois que f est strictement croissante sur R. je ne comprends pas, y a-t-il une valeur interdite x=0 ou non ?
merci d'avance
Gabrielle
donc j'ai un problème avec un exercice
énoncé: soit f(x)= xe^x/(e^x-1)
1.Donner lim x->0 (e^x-1)/x et démontrer que f est continue en O
2.Démontrer que pour tout réel x, on a e^x "supérieur ou égalé à" x+1, et que l'égalité n'a lieu que pour x = 0
3.Donner le tableau des variations de f.
donc pour 1. j'ai trouvé que la limite était égale à e^0 = 1 mais je ne comprends pas pour la continuité
2. si vous pouviez me donner une piste car je ne vois pas par ou commencer
3. j'ai trouvé que f'(x)= e^x(e^x-1-x)/(e^x-1)² > 0 (car du signe de e^x-1-x) donc que f est strictement croissante sur ]-00;0[ et ]0;+00[
mais sur ma calculatrice je vois que f est strictement croissante sur R. je ne comprends pas, y a-t-il une valeur interdite x=0 ou non ?
merci d'avance
Gabrielle