Page 1 sur 1

Exercice de Spé maths

Posté : jeu. 13 nov. 2014 21:48
par Raphaëlle
Il faut montrer que :
\(\sqrt[3]{2-\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}=1\)

J'ai cherché mais je sèche complètement .

Re: Exercice de Spé maths

Posté : jeu. 13 nov. 2014 22:14
par SoS-Math(7)
Bonsoir Raphaëlle

Je te propose de regarder le résultat de \((\sqrt[3]{2-\sqrt{5}}+\sqrt[3]{2+\sqrt{5}})^3\). Tu devrais arriver à une égalité qui te permettra de trouver le résultat cherché.

Bon courage.

Re: Exercice de Spé maths

Posté : jeu. 13 nov. 2014 22:30
par Raphaelle
Mon père m'a filé un coup de main on vient de trouver un truc qui semble correcte, j'ai rédigé ça au propre . :) Merci

Re: Exercice de Spé maths

Posté : jeu. 13 nov. 2014 22:50
par SoS-Math(7)
Bonsoir Raphaëlle

Ce que tu proposes, avec l'aide de ton papa, me semble juste. En calculant comme proposé \((\sqrt[3]{2-\sqrt{5}}+\sqrt[3]{2+\sqrt{5}})^3\), tu arrives de la même façon à étudier \(X^3+3X-4=0\).

Bon travail et bonne continuation.