Algorithme
Posté : sam. 20 avr. 2013 09:17
Bonjours ,
j'ai un devoir maison a faire pendant les vacances et un exercice me pose probleme. Malgré mes nombreuses recherches calculatoire je n'y arrive pas. En voici le sujet :
L'algorithme ci contre permet d'obtenir,pour tout nombre réel x de l intervalle [1;2] un encadrement de ln(x) d'amplitude inférieur ou égale à 0.001 :
VARIABLES
x,t,s,n
INITIALISATION
Lire x
n prend la valeur de 3
TRAITEMENT
x prend la valeur x-1
s prend la valeur x
t prend la valeur x-x²/2
Tant que s-t>0.001
s prend la valeur t+x^n/n
t prend la valeur s-x^n+1/n+1
n prend la valeur n+2
Fin Tantque
SORTIE
afficher t,s et n
1)on choisit x=1.5.Recopier et completer le tableau suivant donnant les différentes étapes.(voir fichier joint)
Pour cette question j'ai ecrit un algorithme sur ma calculatrice mais je trouve pas les resultats deja donnés dans le tableau j'ai alors fait les calculs a la main et ça m'a fait pareil..
En attente de votre aide, je vous remercie d'avance
j'ai un devoir maison a faire pendant les vacances et un exercice me pose probleme. Malgré mes nombreuses recherches calculatoire je n'y arrive pas. En voici le sujet :
L'algorithme ci contre permet d'obtenir,pour tout nombre réel x de l intervalle [1;2] un encadrement de ln(x) d'amplitude inférieur ou égale à 0.001 :
VARIABLES
x,t,s,n
INITIALISATION
Lire x
n prend la valeur de 3
TRAITEMENT
x prend la valeur x-1
s prend la valeur x
t prend la valeur x-x²/2
Tant que s-t>0.001
s prend la valeur t+x^n/n
t prend la valeur s-x^n+1/n+1
n prend la valeur n+2
Fin Tantque
SORTIE
afficher t,s et n
1)on choisit x=1.5.Recopier et completer le tableau suivant donnant les différentes étapes.(voir fichier joint)
Pour cette question j'ai ecrit un algorithme sur ma calculatrice mais je trouve pas les resultats deja donnés dans le tableau j'ai alors fait les calculs a la main et ça m'a fait pareil..
En attente de votre aide, je vous remercie d'avance