limites,continuité et dérivation

Retrouver tous les sujets résolus.
Verrouillé
Naziha

limites,continuité et dérivation

Message par Naziha » ven. 1 avr. 2011 16:13

Bonjour à tous,
je prépare mon bac en candidat libre
S'il vous plaît si vous pouvez m'aider à comprendre le corrigé,car je n'ai pas pu faire la deuxième partie et quand j'ai regardé le corrigé,je n'ai rien compris(100% Exos mats obligatoire et spécialisé Hatier)
partie deux- Soit g la fonction définie sur [-1;1] par g(x)=xE(x)
étudier la continuité de g en -1,en 0 et en 1.
le corrigé:
lim g(x)= lim (-x)=1=g(-1) donc g est continue en -1.
lim g(x)= lim (-x)=0=g(0) donc g est continue en 0.
lim g(x)= lim 0=0. 0≠g(1) donc g n'est pas continue en 1

je n'ai pas compris pourquoi g est continue en -1 et en 0,et n'est pas continue en 1?

Cordialement Naziha
sos-math(22)
Messages : 1694
Enregistré le : lun. 6 sept. 2010 16:53

Re: limites,continuité et dérivation

Message par sos-math(22) » ven. 1 avr. 2011 17:20

Bonsoir Naziha,
En effet, peut-être y a t-t-il une petite erreur dans le corrigé car selon moi, la fonction n'est pas continue en -1.
Le plus simple est de tracer la fonction à l'aide d'un traceur de courbes.
Et l'on voit que :
1) f n'est pas continue en -1 ni en 1
2) elle est effectivement continue en 0.
Pour le démontrer il faut distinguer les limites à droite et à gauche.
Bonne continuation.
Naziha

Re: limites,continuité et dérivation

Message par Naziha » ven. 1 avr. 2011 18:18

Bonsoir,
merci pour votre réponse,
mais sur le corrigé ils ont tracé la courbe en représentant que g est continue en -1 et en 0
je vous envoie la présentation de la courbe,vous pouvez m'expliquer davantage s'il vous plaît

Cordialement Naziha
Fichiers joints
P1010341.JPG
sos-math(22)
Messages : 1694
Enregistré le : lun. 6 sept. 2010 16:53

Re: limites,continuité et dérivation

Message par sos-math(22) » ven. 1 avr. 2011 19:01

Non, je maintiens que cette fonction n'est pas continue en -1, comme vous pouvez le voir sur le fichier joint.
A moins qu'elle soit définie sur un intervalle du type [-1;1], auquel cas, il aurait fallu le préciser dès le départ.
Est-ce le cas ?
Fichiers joints
courbe.png
courbe.png (9.13 Kio) Vu 1784 fois
Naziha

Re: limites,continuité et dérivation

Message par Naziha » ven. 1 avr. 2011 19:17

Bonsoir,
oui 'elle est définie sur un intervalle du type [-1;1],et je l'ai bien précisé (Soit g la fonction définie sur [-1;1] par g(x)=xE(x)...)
merci pour votre réponse.

Cordialement Naziha
sos-math(22)
Messages : 1694
Enregistré le : lun. 6 sept. 2010 16:53

Re: limites,continuité et dérivation

Message par sos-math(22) » ven. 1 avr. 2011 19:28

Bonsoir,
Oui c'est exact. Merci et bonne soirée à vous également.
Verrouillé