Irrationalité de e

Retrouver tous les sujets résolus.
Gilles

Re: Irrationalité de e

Message par Gilles » lun. 21 févr. 2011 18:40

Merci bien,
je poursuis votre démonstration
Donc \(k_{n}\)+\(I_{n}\) est un entier.
Or d'après 3b) pour tout n de N*, \(k_{n}\) est un entier.
Et d'après 3c) \(I_{n}\) n'est pas un entier pour tout n>(ou égal) 2
On a donc bien prouvé par l'absurde que e n'est pas un nombre rationnel.

Merci et bonne soirée.
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Irrationalité de e

Message par SoS-Math(9) » lun. 21 févr. 2011 18:45

C'est bien Gilles,

SoSMath.
Gilles

Re: Irrationalité de e

Message par Gilles » lun. 21 févr. 2011 18:48

Merci infiniment.
Cet exercice est désormais terminé grâce à vous.
Merci et bonne soirée.
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Irrationalité de e

Message par SoS-Math(9) » lun. 21 févr. 2011 19:08

A bientôt,
SoSMath.
Verrouillé