Page 1 sur 1

suites et second degrés

Posté : jeu. 17 avr. 2008 13:20
par Invité
Bonjour, je suis en premiere S et j'ai un devoir maison à rendre pour le lundi 21 avril, je bloque sur la premiere question de l'exo 2 ci dessous :

" Soit la fonction f définie sur R par f(x)= -2x² + x + 36
1) Etudier ses variations, et calculer la valeur exace minimum.
On ne demande pas de construire la courbe représentative f
2) Soit la suite (Un) telle que Un= -2n² + n + 36.
a) Calculer les termes U0 U1 U2
b) Montrer que la suite (Un) est décroissante sur N."


Donc pour la question 1) j'ai calculé Δ=289 > 0 donc 2 solutions :
X1 = 9/2
X2 = -4

donc f(x) = -2 (x - (9/2)) (x + 4)
j'ai fait un tableau de signe
donc : dans ]-∞ -4[ f(x)<0
dans ]-4 9/2[ f(x)>0
dans ]9/2 + ∞[ f(x) <0

puis je n'arrive pas à justifier les variations de la courbe f ni le maximum.

merci de bien vouloir m'expliquer le plus rapidement possible

Julie

suite

Posté : jeu. 17 avr. 2008 14:04
par Invité
Rebonjour,
J'ai continué de réfléchir à l'exercice que je viens d'envoyer et j'ai la reponse à la question 2 mais je ne parviens toujours pas à résoudre la première question...

Pour la question 2 :
2) a) U0 =36
U1 = 35
U2 = 30

b) La suite étant définie par Un = f(n) on étudie le sens de variation de f sur [0 +∞[ (donc voir la question 1 que je n'arrive pas à faire)
En effet ,je suppose que f est décroissante sur N ce qui se traduit par n ≥ n+1 alors f(n) ≥ f(n+1).
En tenant compte de la définition de (Un) cette inégalité s'écrit également Un ≥ U (n+1) ce qui prouve que (Un) est décroissante sur N.

Voilà merci de m'indiquer si ce raisonnement est juste et de m'éclairer sur la première question.
Julie

Posté : jeu. 17 avr. 2008 16:02
par SoS-Math(10)
Bonjour,

Pour avoir les variations d'une fonction, vous pouvez calculer sa dérivée et étudier son signe.

sos math

suite

Posté : jeu. 17 avr. 2008 17:30
par Invité
bonjour,

oui donc en faite il faut que je reffasse un tableau de signes avec au lieu de f(x) f'(x) ?
et pour le reste ça parait juste ?
merci
julie

Posté : jeu. 17 avr. 2008 19:23
par SoS-Math(7)
Bonsoir,

Oui, lorsque vous aurez l'expression de f', il faudra étudier son signe et en conclure le sens de variation de f. La suite vous la connaissez...

A bientôt

SOS math