DM sur les vecteurs
Posté : mar. 24 oct. 2017 15:02
Bonjour,
J'ai un devoir maison à réaliser pour le 6 novembre. Voici le sujet:
Soit ABC un triangle, K et L les milieux respectifs des segments [AB] et [AC].
Soit M un point tel que vecteur CM= 2/3 vecteur CK.
1. a. Justifier que (vecteurCK; vecteurCA) est une base du plan.
b. En utilisant la base (vecteurCK; vecteurCA) montrer que M,B et L sont alignés.
c. Que représente le point M pour le triangle ABC. Justifier.
2. a. Démontrer que vecteur MA+ vecteur MB+ vecteur MC= vecteur nul.
b. Existe-t-il un autre point H du plan tel que vecteur HA + vecteur HB+ vecteur HC = vecteur nul ? ( En supposant qu'un point H du plan vérifie cette égalité, on montrera que vecteur HM = vecteur nul puis...)
Voila ce que j'ai fait:
1. a. (vecteur CK; vecteur CA) est une base car vecteur CK et vecteur CA ne sont pas colinéaires et les points C, K et A ne sont pas alignés car ABC est un triangle avec [CA] un côté de ce triangle et K milieu de [AB], un autre côté du triangle.
b. Je cherche donc à exprimer MB en fonction de CI et CA et ML en fonction de CK et CA.
Je sais que AL = 1/2 AC car L est le milieu de [AC].
ML= MC+ CA+ AL
ML= -2/3CK+ CA+ 1/2AC
ML= -2/3CK+ 1/2 CA
MB= MC + CA + AB
MB= -2/3 CK + CA + AB
Ici je suis bloquée je n'arrive pas à exprimer MB en fonction de CK et CA car il me reste toujours AB.
c. Le centre de gravité se trouve toujours au 2/3 de chaque médiane du triangle. Ici, je sais que K est le milieu de [AB] et on nous dis que CM= 2/3 CK. Donc, grace à cette relation je sais que M est le centre de gravité du triangle puisqu'il se trouve au 2/3 de la médiane (CK). Est-ce correcte comme justification?
2.a. D'après l'explication ci-dessus, M est le centre de gravité du triangle ABC. Il y a une propriété qui dis que si M est le centre de gravité du triangle ABC, MA+MB+MC = vecteur nul. Cependant, cela ne me permet pas de la démontrer mais je ne sais pas comment faire.
b. Je ne sais pas, je n'y arrive pas.
Merci par avance pour votre aide,
Cordialement,
Margot.
J'ai un devoir maison à réaliser pour le 6 novembre. Voici le sujet:
Soit ABC un triangle, K et L les milieux respectifs des segments [AB] et [AC].
Soit M un point tel que vecteur CM= 2/3 vecteur CK.
1. a. Justifier que (vecteurCK; vecteurCA) est une base du plan.
b. En utilisant la base (vecteurCK; vecteurCA) montrer que M,B et L sont alignés.
c. Que représente le point M pour le triangle ABC. Justifier.
2. a. Démontrer que vecteur MA+ vecteur MB+ vecteur MC= vecteur nul.
b. Existe-t-il un autre point H du plan tel que vecteur HA + vecteur HB+ vecteur HC = vecteur nul ? ( En supposant qu'un point H du plan vérifie cette égalité, on montrera que vecteur HM = vecteur nul puis...)
Voila ce que j'ai fait:
1. a. (vecteur CK; vecteur CA) est une base car vecteur CK et vecteur CA ne sont pas colinéaires et les points C, K et A ne sont pas alignés car ABC est un triangle avec [CA] un côté de ce triangle et K milieu de [AB], un autre côté du triangle.
b. Je cherche donc à exprimer MB en fonction de CI et CA et ML en fonction de CK et CA.
Je sais que AL = 1/2 AC car L est le milieu de [AC].
ML= MC+ CA+ AL
ML= -2/3CK+ CA+ 1/2AC
ML= -2/3CK+ 1/2 CA
MB= MC + CA + AB
MB= -2/3 CK + CA + AB
Ici je suis bloquée je n'arrive pas à exprimer MB en fonction de CK et CA car il me reste toujours AB.
c. Le centre de gravité se trouve toujours au 2/3 de chaque médiane du triangle. Ici, je sais que K est le milieu de [AB] et on nous dis que CM= 2/3 CK. Donc, grace à cette relation je sais que M est le centre de gravité du triangle puisqu'il se trouve au 2/3 de la médiane (CK). Est-ce correcte comme justification?
2.a. D'après l'explication ci-dessus, M est le centre de gravité du triangle ABC. Il y a une propriété qui dis que si M est le centre de gravité du triangle ABC, MA+MB+MC = vecteur nul. Cependant, cela ne me permet pas de la démontrer mais je ne sais pas comment faire.
b. Je ne sais pas, je n'y arrive pas.
Merci par avance pour votre aide,
Cordialement,
Margot.