Page 1 sur 1

Parabole (y = x²)

Posté : dim. 21 déc. 2014 15:38
par Juliette
Bonjour,

J'ai un DM à faire pendant les vacances qui me pose quelques difficultés (et quand je dis "quelques", je suis très optimiste.) Il concerne une parabole d'équation y = x², avec deux points distincts A et B. Il est aussi précisé que l'intersection de la droite (AB) avec l'axe des ordonnée forme le point C.

Le premier exercice est essentiellement graphique, on me demande de tracer la parabole, de placer A (d'abscisse 2) et B (d'abscisse -1), de tracer la droite (AB) et de déterminer l'ordonnée de C par lecture graphique.
Jusque là pas de problème : je trouve C = (0;2). On me demande ensuite de remplir un tableau à trois entrées où l'on me donne à chaque fois les abscisses A et B (je dois compléter avec l'abscisse de C).
Je trouve une abscisse 0 pour tout les cas de figures, est-ce que ça vous semble juste? Je dois également "conjecturer le lien entre les abscisses de A et B et l'ordonnée de C", puis l'énoncer sous forme de propriété. Là c'est le néant complet, je ne comprend pas pourquoi on me parle subitement d'ordonnée après avoir rempli un tableau d'abscisses, et surtout je ne vois pas le lien entre les points A B et C.

Pouvez-vous m'aider?

Re: Parabole (y = x²)

Posté : dim. 21 déc. 2014 16:12
par sos-math(27)
Bonjour Juliette,
Il est clair que les points C auront tous pour abscisses 0 puisqu'ils appartiennent à l'axe des ordonnées !!

Pour conjecturer (c'est à dire remarquer une propriété qui semble vraie) à partir du tableau, observe bien les valeurs des ordonnées, et essaie de trouver une relation entre elles (une opération...)
A propos, quelles sont ces valeurs trouvées ?
En attendant de te relire..

Re: Parabole (y = x²)

Posté : sam. 14 sept. 2019 17:06
par Marie
sos-math(27) a écrit :Bonjour Juliette,
Il est clair que les points C auront tous pour abscisses 0 puisqu'ils appartiennent à l'axe des ordonnées !!

Pour conjecturer (c'est à dire remarquer une propriété qui semble vraie) à partir du tableau, observe bien les valeurs des ordonnées, et essaie de trouver une relation entre elles (une opération...)
A propos, quelles sont ces valeurs trouvées ?
En attendant de te relire..

Bonjour, j'ai le même DM sauf que dans mon tableau on me demande l'ordonnée de C. Je ne trouve pas la relation entre les 3.
Si jamais vous êtes encore disponible pour de l'aide je suis preneuse !

Re: Parabole (y = x²)

Posté : sam. 14 sept. 2019 18:01
par SoS-Math(25)
Bonjour Marie,

Quelle est l'ordonnée de C si l'abscisse de A est 2 et celui de B -1 ?

Essaye ensuite avec 3 et -4 comme abscisses pour A et B, tu devrais remarquer quelque chose pour l'ordonnée de C.

Bon courage

Re: Parabole (y = x²)

Posté : sam. 14 sept. 2019 22:52
par Marie
Merci de votre réponse rapide,

Si je fais 3 x -4 j'obtient -12 mais je trouve C= (0;12). Je dois donc dire dans ma propriété qu'il faut inverser le signe du résultat obtenu ?
Cela me semble bizarre, est qu'il y aurait une erreur dans mon calcul pour l'ordonnée de C ?

Merci

Re: Parabole (y = x²)

Posté : dim. 15 sept. 2019 08:00
par sos-math(21)
Bonjour,
\(2\times (-1)=-2\) : tu trouves une ordonnée égale à 2
\(3\times (-4)=-12\) : tu trouves une ordonnée égale à 12
Cela signifie que l'ordonnée à l'origine de la droite est à chaque fois égale à l'opposé du ....
Bonne conclusion

Re: Parabole (y = x²)

Posté : dim. 15 sept. 2019 10:51
par Marie
Bonjour,
Je pense avoir enfin compris, merci beaucoup pour votre aide !
Bonne journée

Re: Parabole (y = x²)

Posté : dim. 15 sept. 2019 11:00
par SoS-Math(33)
Merci, bonne journée à toi aussi
A bientôt sur le forum
SoS-math