Page 1 sur 1
fonction
Posté : lun. 1 déc. 2014 18:32
par baszoe
Bonjour,
j'ai un trou de mémoire
Voici la question:
Montrer que pour tout réel x, f(x)= -3(x-1)²+12
Comment dois-je procéder ?
Dans l'attente de votre aide je vous remercie d'avance.
Re: fonction
Posté : mar. 2 déc. 2014 15:16
par sos-math(21)
Bonjour,
Il manque des données, quelle est ta fonction de départ ? Sous quelle forme est-elle ?
Dans ce genre d'exercices, on te donne souvent une fonction de départ dont l'expression est développée.
Ici cette expression est sous une forme particulière (forme "canonique") et pour prouver que ta fonction de départ peut avoir cette forme, il suffit de développer celle qu'on te propose et vérifier qu'on retombe sur l'expression de départ.
Bon courage
Re: fonction
Posté : lun. 8 déc. 2014 14:56
par baszoe
sos-math(21) a écrit :Bonjour,
Il manque des données, quelle est ta fonction de départ ? Sous quelle forme est-elle ?
Dans ce genre d'exercices, on te donne souvent une fonction de départ dont l'expression est développée.
Ici cette expression est sous une forme particulière (forme "canonique") et pour prouver que ta fonction de départ peut avoir cette forme, il suffit de développer celle qu'on te propose et vérifier qu'on retombe sur l'expression de départ.
Bon courage
ok merci donc pour vérifier je développe f(x)= -3(x-1)²+12 l'expression de départ je retrouve bien l'expression de départ f(x)=-3x²+6x+9
merci
Re: fonction
Posté : lun. 8 déc. 2014 17:08
par sos-math(27)
Bonjour, Plus exactement, il fait développer : -3(x-1)^2+12
pour trouver ensuite l'expression de \(f(x)\) (celle donnée au départ).
Il faut utiliser le développement d'une identité remarquable.
Bon courage, mais les calculs sont aisés.