Page 1 sur 1

Probabilité et loi binomiale

Posté : mar. 20 mai 2014 17:54
par eleve79
Bonjours, en ce moment nous sommes sur le chapitre sur la loi binomiale en probabilité. J'ai un exercice à faire mais je bloque, je ne sais pas du tout comment commencer. Alors voilà l'énoncer: Pour un archer, la probabilité d'atteindre une cible est de 0,7. Les tirs sont supposés indépendants. Quelle es la probabilité qu'il touche trois fois la cible sur une volée de cinq tirs?
Je ne sais pas su tout comment débuter ce problème, j'aurais besoin d'aide. Merci d'avance.

Re: Probabilité et loi binomiale

Posté : mar. 20 mai 2014 21:14
par sos-math(21)
Bonsoir,
Commence par définir ton épreuve de Bernoulli : l'expérience aléatoire est ici le tir à l'arc avec une probabilité de succès (c'est-à-dire d'atteindre la cible) \(P(S)=p=...\).
Donc la probabilité de l'échec est \(1-p=...\).
Tu reproduis ... \((n= ?)\) fois cette expérience dans les mêmes conditions et de manière indépendante, tu obtiens donc un schéma de Bernoulli.
En définissant la variable aléatoire X comptant le nombre de succès (c'est-à-dire le nombre de tirs atteignant la cible), on peut donc dire que X suit une loi binomiale de paramètres \(n=...\) et \(p=...\) et tu dois calculer \(P(X=3)=...\)
A toi de poursuivre.
Bon courage

Re: Probabilité et loi binomiale

Posté : mer. 21 mai 2014 05:58
par Camille
Bonjour,
J'ai donc P(S)=p=0,7 puis la probabilité de l'échec P(E)=1-p=0,3 et n=5
Une fois la variable aléatoire X définie, comme vous l'avez dit je cherche P(X=3), mais là je bloque.

Re: Probabilité et loi binomiale

Posté : mer. 21 mai 2014 11:56
par Camille
Bonjour,
Alors après votre explication j'ai trouvé: P(S)=p=0,7 P(E)=1-p=0,3 et n=5
Après on cherche donc P(X=3), mais comment dois-je faire pour avoir le résultat ?

Re: Probabilité et loi binomiale

Posté : mer. 21 mai 2014 14:11
par SoS-Math(4)
Bonjour,

Il suffit d'appliquer la formule que ton professeur t'a donnée dans son cours.
Si tu n'as pas de formule, tu peux faire ce calcul avec le menu distrib-binomFdp de ta calculatrice (TI) et dans la casio sur le menu stat, dist, binom.
tu dois trouver environ 0,3
bon courage

sosmaths