Exo Application Dérivée Urgent

Retrouver tous les sujets résolus.
Lola

Exo Application Dérivée Urgent

Message par Lola » mer. 2 avr. 2014 20:13

Bonjour,

On considère un rectangle donc le pérmiètre P est égal à 4 cm.

1. Déterminer ses dimensions (L et l) sachant que son aire S est égale à 3/4 cm².

Ici je trouve L = 3/2 et l=1/2. Pour trouver cela j'ai fait un système et j'ai ensuite calculé le discriminant

2. On recherche maintenant les dimensions du rectangle de façon que son aire S soit maximale.

a. Exprimer S en fonction de l.

Je ne vois pas comment faire ici ...

b. On considère la fonction f définie sur R par f(x) = x(2-x).
Dresser le tableau de variations de f.

En déduire les dimensions du rectangle dont le périmètre P est égal à 4 cm et l'aire S est maximale.

Merci !
SoS-Math(4)
Messages : 2724
Enregistré le : mer. 5 sept. 2007 12:12

Re: Exo Application Dérivée Urgent

Message par SoS-Math(4) » mer. 2 avr. 2014 20:25

bonsoir,

1) bien

2) La largeur du rectangle est l donc la longueur est 2-l puisque le demi périmètre est 2, donc la surface est S= ............

sosmaths
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » mer. 2 avr. 2014 20:38

S = 2l - l^2 ?
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » mer. 2 avr. 2014 20:47

Je ne comprends pas comment faire non plus pour la suite car la fonction n'est pas sous la forme ax^2+bx+c ...
SoS-Math(11)
Messages : 2881
Enregistré le : lun. 9 mars 2009 18:20

Re: Exo Application Dérivée Urgent

Message par SoS-Math(11) » jeu. 3 avr. 2014 05:11

Bonjour Lola,

Tu as bien \(S=l(2-l) = 2l -l^2=-l^2+2l+0\) et cela te donne la forme \(ax^2+bx+c\). Mais pour ton problème ce n'est pas ce qui est demandé.

Tu as \(S= -l^2+2l\) et tu dois chercher les dimensions qui te donne l'aire \(S\) maximale.

La méthode consiste à dériver ta fonction \(S= -l^2+2l\), d'étudier le signe de la dérivée et de dresser le tableau des variations pour obtenir le maximum.

Tu travaille avec \(l\) comme avec \(x\) : \((l^2)^, = 2l\) ...

Une indication, à périmètre constant, c'est toujours le carré qui a la plus grande aire

Bonne continuation
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » ven. 4 avr. 2014 15:32

f'(x) = -2l + 2

l = 1

J'ai ensuite fait le tableau de variations que je n'arrive malheureusement pas à joindre ici ..
Comment faire pour la c) ?

Merci encore.
sos-math(21)
Messages : 10401
Enregistré le : lun. 30 août 2010 11:15

Re: Exo Application Dérivée Urgent

Message par sos-math(21) » ven. 4 avr. 2014 15:47

Bonjour,
Tu trouves que ton aire maximale est atteinte pour \(\ell=L=1\), donc lorsque c'est un carré et dans ce cas l'aire vaut 1 \(cm^2\)
Je ne vois pas de question c dans ton message....
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » ven. 4 avr. 2014 16:00

Oups !

c) En déduire les dimensions du rectangle dont le périmètre P est égal à 4 cm et l'aire S est maximale.
SoS-Math(25)
Messages : 1867
Enregistré le : mer. 2 nov. 2011 09:39

Re: Exo Application Dérivée Urgent

Message par SoS-Math(25) » ven. 4 avr. 2014 16:36

Bonjour Lola,

Les questions b. et c. sont identiques car les fonctions S et f sont les mêmes.

As-tu réussi à conclure ?

A bientôt !
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » sam. 5 avr. 2014 11:52

Voici mon tableau de variations pour la fonction f'(x). Il me semble faux mais je ne vois pas comment faire autrement ... merci encore pour votre aide !
Fichiers joints
20140405_124808.jpg
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Exo Application Dérivée Urgent

Message par SoS-Math(9) » sam. 5 avr. 2014 14:26

Bonjour Lola,

Pour trouver le signe de la dérivée f ' il faut l'étudier !
f'(x) > 0 <=> -2l + 2 > 0 <=> 2 > 2l <=> 1 > l.
Donc f'(x) est positive pour l < 1.
Donc ton tableau est faux !

SoSMath.
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » sam. 5 avr. 2014 14:43

D'accord donc comment faire ?
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Exo Application Dérivée Urgent

Message par SoS-Math(9) » sam. 5 avr. 2014 14:54

Lola,

peux-tu être plus précise ?
Je ne comprends pas ce que tu veux ... "comment faire" quoi ?

SoSMath.
Lola

Re: Exo Application Dérivée Urgent

Message par Lola » sam. 5 avr. 2014 15:11

Pour le tableau de variations .. ?
SoS-Math(9)
Messages : 6351
Enregistré le : mer. 5 sept. 2007 12:10

Re: Exo Application Dérivée Urgent

Message par SoS-Math(9) » sam. 5 avr. 2014 15:32

Lola,

dans ton tableau tu t'es trompé dans le signe de -2l+2.
Donc change les signes et la variations ...

SoSMath.
Répondre