Problème et fonctions
Posté : lun. 18 nov. 2013 21:41
Soit l'exercice suivant :
Dans un commerce, le nombre \(y\) d'objets vendus diminue quand le prix de vente \(x\) de cet objet augmente. Une des lois formulées est \(y=b-ax\), où \(a\) et \(b\) sont des constantes à déterminer (\(a>0\)). Un magasin met en vente des cartables au prix de 18€ l'unité, acheté 12€ au grossiste. Au bout d'une semaine, 200 cartables sont vendus. Le directeur décide alors de baisser le prix du cartable de 0,5€ ; il constate qu'à la fin de la deuxième semaine, la vente hebdomadaire a augmenté de 50 unités.
1) En suppostant que la loi \(y=b-ax\) s'applique à cet exemple, quelles sont les valeurs des coefficients \(a\) et \(b\) ?
Par un système de deux équations à deux inconnues :
\(\left\{\begin{matrix}&b&-&18a&=&200\\&b&-&17,5a&=&250\end{matrix}\right.\)
j'obtiens \(a=100\) et \(b=2000\)
donc \(y=2000-100x\).
2) Exprimer le bénéfice \(B\) en fonction de \(x\) : \(B=x-12\)
Dans un commerce, le nombre \(y\) d'objets vendus diminue quand le prix de vente \(x\) de cet objet augmente. Une des lois formulées est \(y=b-ax\), où \(a\) et \(b\) sont des constantes à déterminer (\(a>0\)). Un magasin met en vente des cartables au prix de 18€ l'unité, acheté 12€ au grossiste. Au bout d'une semaine, 200 cartables sont vendus. Le directeur décide alors de baisser le prix du cartable de 0,5€ ; il constate qu'à la fin de la deuxième semaine, la vente hebdomadaire a augmenté de 50 unités.
1) En suppostant que la loi \(y=b-ax\) s'applique à cet exemple, quelles sont les valeurs des coefficients \(a\) et \(b\) ?
Par un système de deux équations à deux inconnues :
\(\left\{\begin{matrix}&b&-&18a&=&200\\&b&-&17,5a&=&250\end{matrix}\right.\)
j'obtiens \(a=100\) et \(b=2000\)
donc \(y=2000-100x\).
2) Exprimer le bénéfice \(B\) en fonction de \(x\) : \(B=x-12\)