Page 1 sur 1

encadrement

Posté : mer. 18 sept. 2013 20:10
par Léa
Bonsoir,

J'aimerais savoir comment il est possible d'encadrer a/b lorsque a appartient à [2;5] et b appartient à [-7;3].
Merci d'avance.

Re: encadrement

Posté : mer. 18 sept. 2013 20:51
par sos-math(22)
Bonsoir,

Supposons que \(a\) appartient à [2;5] et \(b\) appartient à [3;7] ; ce qui n'est pas ta question.

Dans ce cas, \(2 \leq a \leq 5\) et \(3 \leq b \leq 7\).

Donc \(2 \leq a \leq 5\) et \(\frac{1}{7} \leq \frac{1}{b} \leq \frac{1}{3}\), car la fonction inverse est décroissante sur l'intervalle [3;7].

D'où : \(\frac{2}{7} \leq \frac{a}{b} \leq \frac{5}{3}\) en multipliant terme à terme.

Mais dans ton cas, tu ne peux pas faire ce raisonnement car si \(b\) appartient à [-7;3] alors \(\frac{1}{b}\) n'est pas borné.

Bonne continuation.

Re: encadrement

Posté : mer. 18 sept. 2013 21:24
par Léa
Je vous remercie pour vos explications.