Page 1 sur 1
diagonale
Posté : lun. 14 mars 2011 07:13
par alain jean
Bonjour,
Un rectangle ABCD de 9cmx8cm,un rectangle a'b'c'd',de centre O de dimensions 7cmx6cm,inscrit dans le premier rectangle.
Démontrer que les points Ob'B sont alignés.
J'ai utilisé sans succés Thales,Pythagore,et essayé la colinéarité.
Merci de votre aide.
Re: diagonale
Posté : lun. 14 mars 2011 11:43
par sos-math(21)
Bonjour,
Je ne comprends pas la situation : O est le centre des deux rectangles, ou seulement du petit ?
Qu'entends-tu par rectangle inscrit ?
Re: diagonale
Posté : lun. 14 mars 2011 14:00
par alain jean
Bonjour ,
O est le centre du triangle inscrit,et aussi par construction celui de ABCD.
Le triangle a'b'c'd' est contenu dans le triangle ABCD.La marge séparant les deux figures est de 1cmsur tout les côtés.
Merci de votre aide.
Re: diagonale
Posté : lun. 14 mars 2011 14:46
par SoS-Math(9)
Bonjour Alain Jean,
Je ne comprends pas ta description ...
Ta figure ressemble-t-elle à la figure ci-jointe ?
SoSMath.
Re: diagonale
Posté : lun. 14 mars 2011 15:57
par alain jean
Bonjour,
oui exactement.
Merci dce votre aide
Re: diagonale
Posté : lun. 14 mars 2011 16:35
par SoS-Math(9)
Alain Jean,
Le problème avec cette figure, c'est que les points O, B et B' ne sont pas alignés ...
Quelle est la consigne de l'exercice ?
"Démontrer que les points O, B et B' ne sont pas alignés ?"
ou "les points O, B et B' ne sont-ils pas alignés ?"
SoSMath.
Re: diagonale
Posté : lun. 14 mars 2011 16:50
par alain jean
bonjour,
les points o,b',B,sont ils alignes? Texte de la question.
Merci.
Re: diagonale
Posté : lun. 14 mars 2011 17:05
par SoS-Math(9)
Donc, tu as la réponse ... ces points ne sont pas alignés !
SoSMath.
Re: diagonale
Posté : lun. 14 mars 2011 17:17
par ALAIN JEAN
bonjour,
Comment puis-je argumenter cette réponse?
Est-ce que l'emploi de vecteurs peut le démontrer,
Merci.
Re: diagonale
Posté : lun. 14 mars 2011 17:47
par SoS-Math(9)
Oui, tu peux utiliser les vecteurs ...
Par exemple, tu te places dans le repère \((A;\vec{i},\vec{j})\) où \(\vec{i}\) et \(\vec{j}\) sont colinéaires respectivement à \(\vec{AB}\) et \(\vec{AD}\).
Donc dans ce repère, A(0;0), B(9;0), D(0;8) ...
Il te reste à déterminer les coordonées des vecteurs \(\vec{OB}\) et \(\vec{OB^,}\) et conclure.
SoSMath.
Re: diagonale
Posté : lun. 14 mars 2011 22:16
par ALAIN JEAN
bonsoir,
Merci pour votre aide à la résolution du probléme.
Cordialement.