Page 1 sur 1

Coordonnées de vecteurs

Posté : mer. 17 mars 2010 14:27
par Benedicte
Bonjour, j'ai un petit problème à résoudre cet exercice que je ne comprend pas du tout, un petit éclaircissement ne serais pas de refus. :)

le voici:

Dans un repère on donne les points A (-3;2), B (6;5) et C ( 3;-1).
Calculer les coordonnées du centre de gravité du triangle ABC.

Merci pour votre aide d'avance,

Re: Coordonnées de vecteurs

Posté : mer. 17 mars 2010 15:21
par SoS-Math(4)
Bonjour ,

Dans un triangle, le centre de gravité est le point de concours des médianes, et il se trouve au 2/3 de chaque médiane, en partant du sommet.
Donc tu vas choisir par exemple la médiane issue de A. Tu vas chercher les coordonnées de I, milieu de [BC], puis tu vas calculer les coordonnées du vecteur AI.

Ensuite tu cherches G sur le vecteur AI, en écrivant une relation entre les vecteurs AI et AG.

Tu n'oublies pas faire une figure.

sosmaths

Re: Coordonnées de vecteurs

Posté : mer. 17 mars 2010 15:28
par Bénédicte
mais je ne comprends pas comment calculer les coordonnés d'un point, vous pouvey au moins me montrer avec x et y ? s'il vous plait .

Re: Coordonnées de vecteurs

Posté : mer. 17 mars 2010 16:07
par Bénédicte
En fin de compte, c'est bon j'ai trouvé.

vecteur AG = 2/3 du vecteur AI .

Re: Coordonnées de vecteurs

Posté : mer. 17 mars 2010 17:27
par SoS-Math(4)
C'est çà. As tu trouvé les coordonnées de G, ensuite ?

sosmaths

Re: Coordonnées de vecteurs

Posté : mar. 23 mars 2010 17:33
par Bénédicte
Bonjour, justement c'est le point G qui me bloque maintenant.

Re: Coordonnées de vecteurs

Posté : mar. 23 mars 2010 21:07
par SoS-Math(1)
Bonjour Bénédicte,
Pour les coordonnées \((x_I;y_I)\) du milieu I de [BC], vous les obtiendrez en faisant \(x_I=\frac{x_B+x_C}{2}\) et \(y_I=\frac{y_B+y_C}{2}\).
Ensuite, vous avez \(\vec{AG}=\frac{2}{3}\vec{AI}\).
Il faut introduire par la relation de Chasles l'origine O du repère et obtenir des égalités sur les coordonnées des points A, G et I.
A bientôt.