Page 1 sur 1
2nde; Factorisation
Posté : mar. 6 nov. 2007 21:53
par Invité
Bonsoir,
J'ai un exercice sur la factorisation et il faut factoriser au maximum:
A = 15x3-30x²
B = (x-3)(4x-1)-(x-3)²
C = 9x²-6x+1
D = x²-2x+1-3(x-1)
E = x²(x-4)+2x(x-4)+(x-4)
Voilà mes idées:
Pour A il faut factoriser par 3
Pour B par (x-3)
Pour C c'est une identitée remarquable (a-b)²
Pour D il faut réduire x²-2x+1
Pour E il faut factoriser par (x-4)
Pour A, je crois la réponse est:
A = 15x²(x-2) mais j'ai trouvé cette réponse sans savoir comment développé, je n'arrive pas à développer.
C'est tout. Merci de bien vouloir répondre à ce message.
Posté : mar. 6 nov. 2007 22:41
par SoS-Math(7)
Bonsoir,
Votre solution pour A est juste. Ici vous avez factorisé par \(15x^2\). Si, en développant, vous voulez retrouver la forme de départ, il suffit de distribuer le facteur \(15x^2\) : \(15x^2(x-2)=15x^2\times x - 15x^2\times 2 =15x^3-30x^2\).
Pour B : là encore factoriser par \((x-3)\) est juste;
Pour C c'est bien une identité remarquable de la forme \((a-b)^2\)
Pour D : il faut commencer par factoriser \(x^2-2x+1\) pour ensuite factoriser l'expression de D ;
Pour E il faut, effectivement, factoriser par \((x-4)\)
Bon courage !
Posté : mar. 6 nov. 2007 22:58
par Invité
Merci beaucoup, c'est très sympa.
Posté : mar. 6 nov. 2007 23:00
par SoS-Math(7)
A bientôt !
factorisation
Posté : jeu. 31 janv. 2008 18:36
par Invité
aider moi a factoriser cette expression svp:
A(x)=(x-3)(2x-1)-4(2x-1)
jack
SoS-Math(8)
Posté : jeu. 31 janv. 2008 19:05
par SoS-Math(8)
Bonjour,
Et oui même et surtout sur ce forum, un bonjour et un merci cela aide bien pour les réponses aux questions...
Alors juste une petite aide:
Factoriser c'est transformer une somme ou une différence en un produit, donc si j'avais une expression de la forme \(ab-4a\), alors je peux factoriser par \(a\)
\(ab-4a=a\times b-4\times a=a\times(b-4)\)
A vous de faire la suite.
Re: 2nde; Factorisation
Posté : jeu. 4 déc. 2008 18:39
par Invité
Bonsoir, j'ai un petit problème pour factoriser cette expressions :
A=(x-3)(2x-1)+4x(x-3)
Je vous remercie
Laetitia.
Re: 2nde; Factorisation
Posté : jeu. 4 déc. 2008 21:15
par SoS-Math(9)
Bonsoir Laetitia,
Pour factoriser, on peut utiliser essentiellement deux méthodes :
1) Recherche d'un facteur commun, puis utiliser la formule ka + kb = k(a+b) (ici k est le facteur commun.
2) Rconnaître et utiliser une identité remarquable (le plus souvent a²-b² = (a-b)(a+b)).
Donc pour ta question, je te donne un indice : la première méthode semble la bonne ...
Bon courage,
SoSMath.