configuration du plan
Posté : dim. 8 nov. 2009 19:43
Bonjour, j'ai un devoir maison a rendre dans une semaine et j'aimerez que vous m'éclaircissait l'exercice svp
On a un quadrilatère quelconque. I, J, K et L sont les milieux respectifs des côtés [AB], [BC], [CD] et [DA].
1. Démontrer que IJKL est un parallélogramme.
2. Comment choisir ABCD pour que IJKL soit un losange ? Pour que IJKL soit un carré ?
ps : il faut démontrer qu'avec des lettres, donc sans les mesures
1.On sait que ABCD est un quadrilatère.
On trace une droite passant par B et D.
Dans le triangle ABD on sait que I est le milieu respectif de [AB] et que L est le milieu respectif de [AD]
Or d'après le Théorème de la droite des milieux on sait que si une droite passe par les milieux de deux côtés d'un triangle alors elle est parallèle au troisième côté du triangle.
Donc (IL) // (BD)
Or on sait aussi que dans le triangle BDC, J est le milieu respectif de [BC] et que K est le milieu respectif de [DC]
Or, d'après le Théorème de la droite des milieux on a (JK) // (BD)
Or (IL) // (BD)
Donc on a (BD) // (IL) // (JK)
Tracons une droite passant par A et C.
Dans le triangle BAC, on sait que J est le milieu respectif de [BC] et que I est le milieu respectif de [AB].
Or d'après le Théorème de la doite des milieux, on a (IJ) // (AC)
Dans le triangle ADC, on sait que K est le milieu respectif de [DC] et que L est le milieu respectif de [AD].
Or d'après le Théorème de la droite des milieux on a (KL) // (AC)
Or (IJ) // (AC)
Donc on a (AC) // (IJ) // (KL)
Or si on a (IJ) // (KL) et (IL) // (JK)
On peut dire que IJKL est un parallélogramme car ses côtés opposés sont parallèles deux à deux.
Donc IJKL est un parallélogramme
Par contre pour la deuxième question je pense partir sur les propriétés de bases d'un losange et d'un carré ( côtés opposés égaux, ...), mais je ne comprens rien a la question ...
Par avance merci beaucoup pour votre aide
On a un quadrilatère quelconque. I, J, K et L sont les milieux respectifs des côtés [AB], [BC], [CD] et [DA].
1. Démontrer que IJKL est un parallélogramme.
2. Comment choisir ABCD pour que IJKL soit un losange ? Pour que IJKL soit un carré ?
ps : il faut démontrer qu'avec des lettres, donc sans les mesures
1.On sait que ABCD est un quadrilatère.
On trace une droite passant par B et D.
Dans le triangle ABD on sait que I est le milieu respectif de [AB] et que L est le milieu respectif de [AD]
Or d'après le Théorème de la droite des milieux on sait que si une droite passe par les milieux de deux côtés d'un triangle alors elle est parallèle au troisième côté du triangle.
Donc (IL) // (BD)
Or on sait aussi que dans le triangle BDC, J est le milieu respectif de [BC] et que K est le milieu respectif de [DC]
Or, d'après le Théorème de la droite des milieux on a (JK) // (BD)
Or (IL) // (BD)
Donc on a (BD) // (IL) // (JK)
Tracons une droite passant par A et C.
Dans le triangle BAC, on sait que J est le milieu respectif de [BC] et que I est le milieu respectif de [AB].
Or d'après le Théorème de la doite des milieux, on a (IJ) // (AC)
Dans le triangle ADC, on sait que K est le milieu respectif de [DC] et que L est le milieu respectif de [AD].
Or d'après le Théorème de la droite des milieux on a (KL) // (AC)
Or (IJ) // (AC)
Donc on a (AC) // (IJ) // (KL)
Or si on a (IJ) // (KL) et (IL) // (JK)
On peut dire que IJKL est un parallélogramme car ses côtés opposés sont parallèles deux à deux.
Donc IJKL est un parallélogramme
Par contre pour la deuxième question je pense partir sur les propriétés de bases d'un losange et d'un carré ( côtés opposés égaux, ...), mais je ne comprens rien a la question ...
Par avance merci beaucoup pour votre aide