milieu d'un segment

Retrouver tous les sujets résolus.
Répondre
léo

milieu d'un segment

Message par léo » lun. 15 janv. 2018 19:36

Bonsoir ( c'est encore moi )


étant donné un segment [AB]
si je suis I, je mesure les deux vecteurs de moi vers A, B et je trouve IA+IB=0 donc I est milieu du segment [AB]
en effet IA=IB c'est à dire AI=IB

maintenant si j'établis l'égalité MA+MB=2MI
et bien a propriété MA+MB=2MI ne démontre pas que le point I est le milieu du segment [AB]
je démontre seulement que un vecteur plus un autre vecteur donne ( on va dire ) la moyenne d'un autre vecteur
sos-math(27)
Messages : 1427
Enregistré le : ven. 20 juin 2014 15:58

Re: milieu d'un segment

Message par sos-math(27) » mar. 16 janv. 2018 14:45

Bonjour Léo,
La propriété que tu donnes est donc vraie quel que soit le point M, étant donnés les points A, B et leur milieu le point I.
Je te le prouve :
MA+MB=MI+IA+MI+IB=2×MI+IA+IB=2×MI si I est le milieu de [AB]

J'espère que tu es convaincu, à bientôt
Léo

Re: milieu d'un segment

Message par Léo » mar. 16 janv. 2018 18:10

Bonsoir SOS 27


Je raisonne comme ça :
je suis I et je mesure les vecteurs de moi vers A, B et je trouveIA+IB=0 donc I est le milieu de [AB]
Léo

Re: milieu d'un segment

Message par Léo » mar. 16 janv. 2018 18:20

Maintenant
Je ne suis pas I ( je suis le point M ) et je trouve que MA+MB est différent de 0
Donc je ne suis pas le milieu
sos-math(27)
Messages : 1427
Enregistré le : ven. 20 juin 2014 15:58

Re: milieu d'un segment

Message par sos-math(27) » mar. 16 janv. 2018 19:31

Bonsoir Léo,
Ton raisonnement pourrait être bon, mais il tourne en rond :
Je (point M) ne suis pas I (milieu de [AB]), donc MA+MBn'est pas égal à 0
et c'est tout !
Merci pour ces échanges, à bientôt
Répondre